
4 8 | october 2010 www.l inux journa l .com

DirB,
Directory

Bookmarks
for Bash

Inspired by browser bookmarks, DirB allows you to create directory
bookmarks for moving around faster on the command line.

IRA CHAYUT

I
magine browsing the Web and having to type the full

Uniform Resource Identifier (URI) path each time you

visit a Web page—painful. However, since 1993, when

browser bookmarks were added to the Mosaic browser,

they have made short work of returning to sites you go

to often (see en.wikipedia.org/wiki/Internet_bookmark).

Regardless of whether you call them “Bookmarks”,

“Favorites”, “Hotlists” or “Internet Shortcuts”, they

are great time-savers.

As a developer of consumer product software, I

frequently work concurrently in multiple directory trees.

I often bounce between the source code directories for

each of my active development products, the directories

that hold vendor documentation, and my desktop

(where I keep all my active but as-of-yet unfiled work).

I used to open a separate xterm window for each active

directory, but mousing between the various windows

and keeping track of which window had what directory

was tedious and error-prone.

If command-line bookmarks existed, they would

transport me to often-visited directories with a few

keystrokes. Of course, the Linux change directory

command (cd) comes with one built-in shortcut: the

one to go to your home directory. To go home, I need

to enter only the cd command without an argument.

It’s even easier than clicking the heels of my ruby slippers

(which is not an unrelated reference to a popular scripting

language, but instead a spurious reference to The Wizard

of Oz). But, this is where the convenience ends.

I created Directory Bookmarks (DirB, pronounced

“derby”) to extend the concept of bookmarks to the

command line and to move between directories quickly.

DirB is implemented as a set of Bash shell functions and

consists of a few simple commands:

! s — save a directory bookmark.

! g — go to a bookmark or named directory.

! p — push bookmark/directory onto dir stack.

! r — remove a saved bookmark.

! d — display a bookmarked directory path.

! sl — print the list of directory bookmarks.

These commands can be used alongside the usual

Bash commands: cd, pushd and popd.

As you will see, DirB means fewer keystrokes and

greater productivity. Now, I (almost) never leave home

without it.

If DirB’s function names conflict with commands or

aliases that you already use, change the names of the

offending functions in the .bashDirB file to ones that

work for you.

www.l inux journa l .com october 2010 | 4 9

Installation
To install DirB, download the source file .bashDirB from

www.DirB.info/bashDirB, and save it as ~/.bashDirB to your

home directory. Then, edit your ~/.bashrc file and include the

following in the file:

source ~/.bashDirB

Each new Bash session now will have the power of DirB. If you

use the DirB commands within the ~/.bashrc file, place the source

line above where the DirB commands are used. I find that placing

this near the top of the file works for me.

After installing DirB, open a new xterm window and follow

along with the rest of this article.

DirB comes with a small bonus. When working in multiple win-

dows at the same time, I find it handy to have each xterm window

display the current directory’s name in its title bar. To accomplish

this, the .bashDirB file sets up the primary Bash shell prompt, $PS1,

to output an escape sequence. This string then will be output as

part of the command-line prompt, and the X11 windowing soft-

ware will respond to the escape sequence by updating the xterm

window’s title bar. If you are not using X11, or if this behavior is

not desired, edit ~/.bashDirB and insert a pound sign (#) in front of

the PS1= on line 18 of the file to comment out that feature.

Saving and Using Bookmarks
The desktop is one of my most common destinations. I saved

a bookmark for my desktop by going there and then entering

an s command:

% cd ~/Desktop

% s d

(Note that the % represents the shell’s command-line prompt

and is not typed as part of the command.) The second line above

creates a new bookmark named d.

Wherever I am, I now can go to my desktop with the g command:

% cd /tmp # go somewhere

% pwd

/tmp

% g d # go to the desktop

% pwd

/home/Desktop

Going to a Specified Directory
Now it’s possible to move to a directory using cd or g. Wouldn’t it

be simpler to have one way that worked for both bookmarks and

directory paths? Of course it would. So, DirB’s g command has

been extended to be able to replace cd fully:

% pwd

/home/Desktop

% g /tmp

% pwd

/tmp

The g command behaves the same as the cd command if

the first character of the argument is a period (.) or if the

argument is not the name of a saved bookmark. The special

case of the first character being a period allows you to move

to a current subdirectory that has the same name as a previously

saved bookmark:

% cd /tmp

% mkdir d

% g ./d

% pwd

/tmp/d

If you use the command: g d instead of g ./d above, DirB

takes you to your desktop, as a bookmark for the desktop with

the name of d already exists.

If the argument to g is the relative or absolute path of a

directory and there is no bookmark by that name, you are taken

to the specified path:

% cd /tmp

% mkdir subdir

% g subdir

% pwd

/tmp/subdir

As with the cd command, if you enter the g command

without an argument, you go to your home directory:

% cd /tmp

% g

% pwd

/home

Traveling with Relatives
Most of the source code directories I work in are organized with

the same layout. From the application’s source code directory,

I frequently need to refer to header files in my standard library.

These headers are located two directories up and two directories

down in the filesystem: ../../stdlib/inc.

DirB can save relative bookmarks or bookmarks of any

specified path. It is not necessary to be in the directory to be

bookmarked. A longer version of the s command can be used

to specify a bookmark’s path:

% g projA

% pwd

/home/projectA/source/application/main

% s stdh ../../stdlib/inc

% g stdh

% pwd

/home/projectA/source/stdlib/inc

Once the relative bookmark has been created with the s

command, relative movements can be made easily from anywhere

that the relative path exists:

% g projB

% pwd

/home/projectB/source/application/main

% g stdh

% pwd

/home/projectB/source/application/main

This longer version of the s command sets a full path directory

bookmark without changing to the target directory first:

% g projA

% pwd

/home/projectA/source/application/main

% s t /tmp

% pwd

/home/projectA/source/application/main

% d t

/tmp

Note that the current working directory was not changed by

the s command and that the bookmark was set to the argument

of the s command and not the current directory. The bookmark

can be used later, the same as simpler bookmarks:

% g t

% pwd

/tmp

Manipulating the Directory Stack
As the g command extends Bash’s built-in cd command, DirB has

the p command to extend the shell’s pushd command and also

replaces the most common usage of the shell’s popd command.

In its most-used form, the p command changes to a new

directory, while remembering the current directory on a stack.

The state of the directory stack then is printed:

% g

% pwd

/home

% p /tmp

/tmp

~

The tilde (~) is Bash’s shortcut for the home directory. The

target just as easily can be a bookmark:

% p d

~/Desktop

/tmp

~

The directory stack listing is done with one directory per line,

instead of the default listing style of pushd with all the directories

printed across the line. This is a personal preference and is accom-

plished by discarding the output from the invoked pushd command

and then running a dirs -p command afterward.

Except for bookmark targets and the target dash (-), the p

command works just as Bash’s pushd command. In fact, all the real

work is accomplished, behind the scenes, by pushd. So the normal

pushd behavior, as well as the enhanced bookmark functionality, is

valid (and useful):

% p directory # adds dir to top of dir stack

% p bookmark # adds bookmark to dir stack

% p # swaps top two stack entries

% p +n # rotate nth entry from top to top

% p -n # rotate nth entry from bottom to top

To rotate the directory stack, so that the bottom directory

moves to the top of the stack as the current directory, use p -0.

In addition to replacing pushd, the p command also can replace

the shell’s popd command in its simplest form:

% g

% pwd

/home

% p /tmp

/tmp

~

% p -

~

If the full functionality of the popd command is needed, the

standard popd command (along with pushd and cd) still is available

and can be used alongside the DirB commands.

To get a listing of the current directory stack, the shell’s dirs

command works as it did before DirB.

Listing the Saved Bookmarks
DirB’s sl command prints a saved bookmark listing. It has two

forms. The simplest form lists the files across the line, from left to

right, in reverse time order, most recently accessed bookmark first:

% sl

d test prod tmp beta alpha

In this example, the bookmark for my desktop, d, was

accessed most recently.

In the longer form, sl lists the date and time that each

bookmark was last referenced:

% sl -l

2010-03-10 14:42 d

2010-03-01 14:19 test

2010-02-27 10:17 prod

2010-02-27 14:21 tmp

2009-10-22 17:26 beta

2009-08-05 11:37 alpha

In this fuller listing, you can see that the d bookmark was refer-

enced on March 10th, and the last time that the test bookmark was

referenced was nine days earlier. If the long listing does not fit on a

screen, the less command will page through the listing automatically.

It is possible to pass a regular expression to sl and list only

the matching bookmarks. To list the saved bookmarks that begin

with the letter t:

% sl "t*"

test tmp

% sl -l "t*"

2010-03-10 14:19 test

2010-02-27 14:21 tmp

Note that the regular expression needs to be protected by

double (or single) quotes to prevent the shell from trying to

expand it before it is seen by the sl command.

Whenever a bookmark is the target of a g, p or s command,

its timestamp is updated to record the reference. However,

5 0 | october 2010 www.l inux journa l .com

FEATURE DirB, Directory Bookmarks for Bash

timestamps are not updated when a directory is accessed using

cd, pushd or by directory stack manipulations.

Removing Stale Bookmarks
Directory bookmarks are so easy to make that I create them frequently.

Many of my bookmarks are short-lived. If left unchecked, the

saved bookmark listing would become very long and cluttered.

DirB’s r command simplifies the removal of unwanted bookmarks:

% sl

test prod d tmp beta alpha

% r alpha

% sl

test prod d tmp beta

The second saved bookmark listing shows that the r alpha

removed the unwanted alpha bookmark.

DirB or the underlying Bash commands issue error messages

when a problem is encountered. Accessing a deleted bookmark

results in such a message:

% g alpha

bash: cd: alpha: No such file or directory

This is the error message issued when a bookmark does not

exist, possibly due to a misspelling.

Using Bookmarks in Scripts
Bookmarks save keystrokes and allow for fast movement between

directories. Bookmarks also can be used to make scripts more

portable. By referencing bookmarks, instead of fixed paths, it is

possible to re-use scripts in different environments easily. I work

on both Linux and Cygwin platforms. (Cygwin is a Linux-like

environment for Windows platforms. For more information, or to

download Cygwin, see www.cygwin.com.) Because Cygwin

presents a very Linux-like look and feel, the transitions are painless.

However, the Linux and Cygwin directory structures are different.

I use DirB to set up the same list of common bookmarks on each

system. This way, I can change between directories on the command

line with the same keystrokes, regardless of the platform.

In addition to Linux and Cygwin environments, DirB has been

tested on BSD UNIX and Mac OS X platforms. So, the flexibility of

DirB bookmark references can span across a variety of systems.

The d command extends the DirB facility to shell scripts. (The

d is short for either “display bookmark path” or “dereference

bookmark path”, your choice.) It allows a script to obtain the

full pathname of a bookmark’s directory.

Bash’s command substitution $(command) feature usually is

used to access d:

% DTOP="$(d d)"

% echo $DTOP

/home/Desktop

The double quotes need to surround the shell substitution in

case there are spaces in the directory path. Unfortunately, this is

all too common on the Windows-based Cygwin platform, so I

always use the quotes. In the above example, the shell variable

$DTOP could be used to access the desktop. To create a new log

file on the desktop, the output of a command could be redirected

to $DTOP/logfile. Do not forget the double quotes, in case the

dereferenced path includes spaces.

I recommend the use of Bash’s substitution feature, as shown

above. However, a shorter way to print out the name of the path

is to use DirB’s d command directly:

% d d

/home/Desktop

Looking behind the Curtain
DirB keeps all directory bookmarks in ~/.DirB, a “hidden” subdirectory

of the user’s home directory. When the file ~/.bashDirB is sourced

from within ~/.bashrc, it checks to see whether the ~/.DirB

directory exists. If the directory does not exist, it is created. This

guarantees that the bookmark repository exists.

Each bookmark has an associated file in the ~/.DirB directory

with the same name as the bookmark. The bookmark file contains

a one-line command, such as:

$CD /home/Desktop

The shell variable $CD is set by the g and p commands to cd

or pushd, respectively, and the variable is expanded by the shell

when the bookmark is invoked. In essence, the command g d is

transformed into cd /home/Desktop, and p d is transformed into

pushd /home/Desktop.

The DirB commands are implemented as Bash functions that

do some error checking, determine which action is to be performed,

and then invoke a standard command. For example, the g

command does a couple checks before invoking the cd command:

"g" - Go to bookmark

function g () {

if no arguments, go to the home directory

if [-z "$1"]

then

cd

else

if $1 is in ~/.DirB and does not

begin with ".", then go to it

if [-f ~/.DirB/"$1"

-a ${1:0:1} != "."]

then

update the bookmark's timestamp a

and then execute it

touch ~/.DirB/"$1" ;

CD=cd source ~/.DirB/"$1" ;

else

else just "cd" to the argument,

usually a directory path of "-"

cd "$1"

fi

fi

}

The function g checks to see whether there is an argument. If

$1 is a zero-length string, the user is sent home with a cd invoked

with no argument. Otherwise, a check is made to see if the argument

is the name of a saved bookmark and the first character of the

argument is not a period.

If both conditions are met, the bookmark is run as part of the

current shell by sourcing the bookmark file. Before execution,

the shell variable $CD is set to the cd command. source is used

instead of calling the bookmark as a shell script so that the direc-

tory change will affect the current shell. A called script would have

a unique shell session that would terminate after the cd or pushd.

Thus, it would have no lasting effect on the current shell session.

If the argument is not the name of a bookmark, or if it begins

with a period, the cd command is invoked with the argument to

go to the specified directory path.

Note that the source command in the g function above starts

with a variable assignment:

CD=cd source ~/.DirB/"$1" ;

Bash syntax allows a command to be preceded by one or more

variable assignments.

Error Handling
Most DirB commands eventually call cd, pushd or popd to perform

the requested action. If one of these standard commands encounters

a problem, it issues an error message to the standard error (stderr)

stream and exits with a failing return code.

Note that because bookmarks are the names of their associated

files in the ~/.DirB repository, they cannot have slashes in their names.

If a bookmark cannot be created (most likely due an invalid character

in the name), s will print an error message to the standard error:

% s a/d

bash: DirB: /home/.DirB/a/b could not be created

An error message will result if an argument to either g or p is

neither a bookmark nor a valid directory path:

% p missing

bash: pushd: missing: No such file or directory

This will occur if the bookmark name is misspelled or if the

bookmark has been removed. A similar error message results

from the d and r commands if their arguments are not valid

names of a saved bookmark:

% d missing

bash: DirB: /home/.DirB/missing does not exist

% r missing

bash: DirB: /home/.DirB/missing does not exist

If an error is encountered, DirB commands will exit with a failing

return code. This behavior allows other Bash scripts to use these

functions and take appropriate action in the event of an error.

Conclusion
DirB was created as a set of Bash functions to extend the concepts

of bookmarks to Linux directories. It accelerates the movement

between frequently accessed directories from the command line or

from shell scripts. Although it’s a simple tool, I rely upon DirB daily

and hope that others will find it useful too.!

Ira Chayut is a longtime UNIX/Linux developer, having first worked on version 6 UNIX in 1976. He is

the author of C and UNIX reference booklets, runs www.verilog.net, and has given talks on integrated

circuit verification. Currently, he is the founder of a consumer products company and is responsible

for all of the embedded and DSP programming. He can be reached at ira@dirb.info.

5 2 | october 2010 www.l inux journa l .com

FEATURE DirB, Directory Bookmarks for Bash

