

BEGINNER'S GUIDE TO
SUN™ GRID ENGINE 6.2
Installation and Configuration

White Paper
September 2008

Abstract

This white paper will walk through basic installation and configuration of Sun Grid Engine 6.2, explain Sun

Grid Engine architectural concepts, and present some suggested configurations for clusters of various sizes.

The target audience is system administrators who have downloaded the Sun Grid Engine 6.2 evaluation

version or the Grid Engine 6.2 courtesy binaries or who have just purchased the Sun Grid Engine 6.2 software.

Sun Grid Engine

Sun Microsystems, Inc

Table of Contents

Introduction to Sun Grid Engine..............................2
Sun Grid Engine Jobs..2
Sun Grid Engine Component Architecture...........................2
Sun Grid Engine Basics..4

Queues...4
Host Groups..5
Resources...6

Other Concepts..7

Sun Grid Engine Scheduler......................................9
Job Selection...9

Ticket Policies..10
Share Tree Policy..10

Functional Ticket Policy...12

Override Ticket Policy..13

Urgency Policies..14
Wait Time Policy...14

Deadline Policy...14

Resource Urgency Policy..15

Custom Policy..16
Job Scheduling...16
Other Scheduling Features..17

Resource Quota Sets...17
Resource Reservation...18
Advance Reservation..18

Additional Information on Job Scheduling.........................18

Planning a Sun Grid Engine Installation.................19
Installation Layout...19
QMaster Data Spooling...20
Execution Daemon Data Spooling.....................................21
Managing User Data...22
Naming Services..23
User Accounts..23
Admin Accounts...23
Service Ports...24

Suggested Sun Grid Engine Configurations.............25

Sun Microsystems, Inc

General Suggestions...25
Small Clusters..25

Small Cluster, Low Throughput..25
Small Cluster, Mixed Batch/Parallel Workload..............................26

Mid-sized Clusters..27
Mid-Sized Cluster, High Throughput...27
Mid-Sized Cluster, Secure and Highly Available..............................29

Large Clusters ...30
Large Cluster, Medium Throughput..30

Multi-Cluster...31

Summary..33
About the Author...33

Configuring an SMP/Batch Cluster.........................34

1 Sun Microsystems, Inc

Executive Summary

The Sun Grid Engine software is a distributed resource management (DRM) system that

enables higher utilization, better workload throughput, and higher end-user

productivity from existing compute resources. By transparently selecting the resources

that are best suited for each segment of work, the Sun Grid Engine software is able to

distribute the workload efficiently across the resource pool while shielding end users

from the inner working of the compute cluster.

In order to facilitate the most effective and efficient scheduling of workload to

available resources, the Sun Grid Engine software gives administrators the ability to

accurately model as a resource any aspect of the compute environment that can be

measured, calculated, specified, or derived. The Sun Grid Engine software can monitor

and manage resources that are concrete, such as CPU cores or system memory, as well

as abstract resources, like application licenses or mounted file systems.

In additional to allocating resources based on workload requirements, the Sun Grid

Engine software provides an arsenal of advanced scheduling features that allow an

administrator to model not only the compute environment, but also the business rules

that control how the resources in that compute environment should be allocated.

Some of the advanced scheduling features offered by the Sun Grid Engine 6.2 software

are advance reservation of resources, fair-share scheduling, scheduling by resource

value, observation of deadline times for specific segments of work, user-specified

relative priorities, and starvation prevention for resource-hungry workload segments.

Because of the flexibility offered by the Sun Grid Engine software, administrators

sometimes find themselves in need of some help getting started. This white paper

endeavors to fill that need by providing guidance on the following topics:

• Chapter 1, “Introduction to Sun Grid Engine,” describes some basic Sun Grid Engine

concepts.

• Chapter 2, “Sun Grid Engine Scheduler,” introduces the complete list of scheduling

policies and what problems each one solves.

• Chapter 3, “Planning a Sun Grid Engine Installation,” provides suggestions for

preparing the computing environment for a cluster installation.

• Chapter 4, “Suggested Sun Grid Engine Configurations,” presents some common

cluster types with suggested configuration options.

This white paper is intended for administrators who will be or are in the process of

installing a Sun Grid Engine cluster and for anyone who wishes to understand more

about the deployment and configuration of Sun Grid Engine clusters. It is meant as a

companion and supplement to the Sun Grid Engine 6.2 Installation Guide1.

Footnote area

Footnote area

2 Introduction to Sun Grid Engine Sun Microsystems, Inc

Chapter 1

Introduction to Sun Grid Engine
The Sun Grid Engine software is a distributed resource management (DRM) system

designed to maximize resource utilization by matching incoming workload to available

resources according to the needs of the workload and the business policies that are in

place. This chapter provides an overview of some basic Sun Grid Engine concepts, the

Sun Grid Engine component architecture, and the scheduling policies.

Sun Grid Engine Jobs
Each incoming segment of work is known as a job. Administrators and end users

submit jobs using qmon, the graphical user interface; one of the command-line tools,

such as qsub or qrsh; or programmatically by using the Distributed Resource

Management Application API2 (DRMAA, pronounced like “drama”).

Each job includes a description of what to do, for example an executable command,

and a set of property definitions that describe how the job should be run. An example

job might be to run the script, myjob.sh, with the output stream redirected to

/var/tmp/run1 and the working directory set to /home/dant. In this example,

the Sun Grid Engine software would locate an appropriate free resource on which to

run the myjob.sh script and send the job there to be executed.

The Sun Grid Engine software recognizes four basic classes of jobs: batch jobs,

parametric (or array) jobs, parallel jobs, and interactive jobs.

• A traditional batch job is single segment of work that is executed only once, as in the

above myjob.sh example.

• A parametric job, also known as an array job, consists of a series of workload

segments that can all be run in parallel but are completely independent of one

another. All of the workload segments of an array job, known as tasks, are identical

except for the data sets on which they operate. Distributed rendering of visual

effects is a classic example of an array job.

• A parallel job consists of a series of cooperating tasks that must all be executed at

the same time, often with requirements about how the tasks are distributed across

the resources. Very often parallel jobs make use of a parallel environment, such as

MPI3, to enable the tasks to intercommunicate.

• An interactive job provides the submitting user with an interactive login to an

available resource in the compute cluster. Interactive jobs allow users to execute

work on the compute cluster that is not easily submitted as a batch job.

Sun Grid Engine Component Architecture
The following diagram shows the components of a Sun Grid Engine cluster at a high

level:

There are four classes of jobs:

• batch jobs – single segments of work

• parametric or array jobs – groups of

similar work segments operating on

different data

• parallel jobs – jobs composed of

cooperating distributed tasks

• interactive jobs – cluster-managed

interactive logins

3 Introduction to Sun Grid Engine Sun Microsystems, Inc

At the center of the above diagram is the qmaster. The qmaster is the central

component of a Sun Grid Engine compute cluster, accepting incoming jobs from users,

assigning jobs to resources, monitoring the overall cluster status, and processing

administrative commands. The qmaster is a multi-threaded daemon that runs on a

single host in the compute cluster. To reduce unplanned cluster downtime, one or

more shadow masters may be running on additional nodes in the cluster. In the case

that the qmaster or the host on which it is running fails, one of the shadow masters

will promote the host on which it is running to the new qmaster node by locally

starting a new qmaster daemon.

Each host in the cluster that is to execute jobs will host an execution daemon. The

execution daemon receives jobs from the qmaster and executes them locally on its

host. The capacity to execute a job is known as a job slot. The Sun Grid Engine

software does not place a limit on the number of job slots that an execution daemon

can offer, but in most cases the number of job slots is determined by the number of

CPU cores available at the execution host. When a job has completed, the execution

daemon notifies the qmaster so that a new job can be scheduled to the now free job

slot. At a fixed interval each execution daemon will send a report of its status to the

qmaster. If the qmaster fails to receive several consecutive load reports from an

execution daemon, the qmaster will mark that execution host and all its resources as

no longer available and will remove it from the list of available job scheduling targets.

Jobs are sent to the qmaster in a variety of ways. DRMAA provides a programmatic

interface for applications to submit, monitor, and control jobs. The Sun Grid Engine

software comes with C and Java™ language DRMAA bindings, making it possible to use

DRMAA from a wide range of applications. qmon is the Sun Grid Engine graphical user

interface. From qmon users and administrators can submit, monitor, and control jobs

as well as manage all aspects of the cluster. qsub is a command-line utility for

Useful Terms

• cluster – a group of hosts connected

together by the Sun Grid Engine

software

• job – a segment of work to be executed

by the cluster, defined as anything

executable from a command terminal

• qmaster – the central component of a

cluster

• master host – the host on which the

qmaster is running

• shadow master – a daemon that

manages qmaster fail-over

• execution daemon – the component

responsible for executing jobs using

compute resources

• execution host – a host on which an

execution daemon is running

Footnote area

Figure 1: Sun Grid Engine Component Architecture

4 Introduction to Sun Grid Engine Sun Microsystems, Inc

submitting batch, array, and parallel jobs. qsh, qrsh, qlogin, and qtcsh are all

command-line utilities for submitting various kinds of interactive jobs. For more

information on these command-line utilities, see the Sun Grid Engine 6.2

Administration Guide4.

The last component shown in the diagram is ARCo, the Accounting and Reporting

Console. ARCo is a web-based tool for accessing Sun Grid Engine accounting

information automatically stored in an SQL database. Using ARCo, end users and

administrators can create and run queries against the cluster's accounting data.

Administrators can also pre-configure ARCo with common queries for their end users to

run.

Sun Grid Engine Basics
To give administrators the flexibility to model even the most complex compute

environments, the Sun Grid Engine software provides powerful abstractions for

resource and cluster modeling. Three of those abstractions, queues, host groups, and

resources, are discussed below.

Queues

In a Sun Grid Engine cluster, queues define where and how jobs are executed. A Sun

Grid Engine queue is a logical abstraction that aggregates a set of job slots across one

or more execution hosts. A queue also defines attributes related to how jobs are

executed in those job slots, such as the signal used to suspend a job or the executable

that is run before a job to prepare the job's execution environment. Finally, a queue

defines attributes related to policy, such as which users are allowed to run jobs in that

queue or when the queue has become overloaded.

For example, a default Sun Grid Engine installation will have a queue called all.q.

all.q will span every host in the cluster, with a number of job slots on each host

equal to the number of CPU cores available at that host. By default, all.q will allow

jobs from any user. If a user submits a job to such a default cluster, the job will run in

one of all.q's job slots on the execution host that is least loaded.

A Sun Grid Engine queue is composed of a series of queue instances, one per execution

host. Queue instances are named for the queue and execution host with which they

are associated, such as all.q@myhost. Each queue instance inherits all the

properties of the queue to which it belongs. Each queue instance can override

inherited properties with values that are specific to its execution host. For example, in

a default cluster as described above, the queue, all.q, will have a slots attribute that

is set to 1. This means that all.q offers one job slot on every host in the queue. Each

queue instance in all.q, however, will override that slots value with a value equal to

the number of CPU cores on that execution host. In this way, all.q is able to offer a

number of job slots on each execution host that is appropriate for that execution host.

Cluster Queues

In the 5.3 and prior releases of the Sun Grid

Engine software, a queue was limited to a

single host. The 6.0 release introduced

cluster queues, which were a new kind of

queue that was able to span multiple

hosts. The 5.3 definition of a queue was

roughly equivalent to the 6.0 definition of a

queue instance.

At the transition point from 5.3 to 6.0, the

term “queue” referred to a 5.3 queue, and

the term “cluster queue” referred to a 6.0

multi-host queue. Today, many years later,

the term “queue” refers to the 6.0 cluster

queue, and the term “cluster queue” has

passed out of the vernacular. Queue

instances are known today as “queue

instances.”

Be aware, however, that in some older

documentation and papers, circa 2004 or

earlier, the queues named in the

documentation may not be the queues

used by the Sun Grid Engine software

today.

“Least Loaded”

The Sun Grid Engine software allows

administrators to specify the definition for

“least loaded” for each cluster. In a default

cluster, “least loaded” is defined as the

host with the lowest value for

np_load_avg, which is the average number

of processes in the OS's run queue over the

last five minutes, divided by the number of

CPU cores belonging to that execution

host, i.e. the five-minute load average

normalized against the number of

processor cores.

5 Introduction to Sun Grid Engine Sun Microsystems, Inc

Host Groups

A Sun Grid Engine host group is an administrative handle for referencing multiple

execution hosts at once. Host groups have no attributes associated with them other

than the list of hosts they contain. Host groups can be hierarchical, with each host

group potentially containing a mix of hosts and other host groups. For example, a

default Sun Grid Engine installation will have a host group called @allhosts that

contains every execution host in the cluster. Instead of listing all the execution hosts

in the cluster explicitly (and redundantly) all.q is defined as running across

@allhosts.

The following figure shows a graphical representation of what a sample queue and

host group configuration might be:

In this example, the host group, @allhosts, contains the host, solsparc3, and

the host groups, @dev and @prod. The host group, @dev, contains hosts

solsparc1 and solsparc2, and the host group, @prod, contains the hosts

solamd1 and solamd2. The queue, all.q, spans all hosts in the cluster. The

queue, sparc, spans only the hosts with UltraSPARC™ processors. (Note that the

queue name does not end with “.q”. The “.q” suffix is a convention, not a

requirement.) Similarly, the queue, amd, spans the hosts with AMD processors. In

each of these three queues, the area where the queue intersects with the host is

shaded slightly. The shading represents a queue instance. The queue, smp, is

available only on the host, solsparc2, presumably because that host is the only

Figure 2: Example Host Group and Queue Configuration

6 Introduction to Sun Grid Engine Sun Microsystems, Inc

large SMP host in the cluster. Similarly, the queue, blast, is only available on the

host, solamd2, presumably because solamd2 is the only host properly configured

for running BLAST5 jobs. In the upper right corner of the diagram is a blow-up of a

queue instance shows the job slots. all.q@solamd2 is shown in this blow-up as

having four job slots, three of which are occupied with jobs. Every other queue

instance in the cluster will similarly have some number of job slots, with zero or more

of them occupied.

Resources

A Sun Grid Engine resource, also known as a complex, is an abstraction that models

some property of an execution host or the compute environment. Examples include

the load average of an execution host, the number of application licenses for a

particular application that are available for use by jobs, or the name of the data center

that houses an execution host. When a user submits a job, he or she can include

resource needs in that job's definition. Resources are then used by the scheduler to

match jobs to execution hosts and by the administrator to create usage policies.

Scheduling is explained in greater detail in Chapter 2. Using resource definitions,

administrators can model anything in their compute environment that can be defined,

tracked, and/or measured. Resources can even be used to model abstract notions,

such as importance or job type. Sun Grid Engine recognizes three basic types of

resources: static, consumable, and predefined.

Static resources model a fixed characteristic of an execution host or the compute

environment. They have numeric or text values that are assigned by the

administrator. For example, the version of the Java Virtual Machine installed on an

execution host might be modeled as a static resource with a numeric value.

There is a special type of static resource called a dynamic resource. The Sun Grid

Engine software allows an administrator to create executable programs or scripts

(known as load sensors) that measure the values of resources. The execution

daemon(s) periodically runs those scripts and reports the measured resource values.

Consumable resources (also known as consumables) model elements of the compute

environment that are available in fixed quantity and that are “consumed” by running

jobs. When a job requests a consumable resource, the amount of that resource that is

available is decremented for the duration of that job. When a job ends, all of the

consumable resources it was using are freed for use by other jobs. When a consumable

resource is exhausted, no more jobs requesting that resource can be scheduled until

more of that resource becomes available again. Application software licenses are

classic consumable resources. It is important that no more jobs are started than there

are appropriate licenses available.

The predefined resources are a set of resources automatically measured and reported

by every execution daemon. These include things like the system load and the amount

of free memory.

7 Introduction to Sun Grid Engine Sun Microsystems, Inc

Resources are associated with either a queue, a host, or all hosts (called the global

host). A resource that is assigned to a queue is available from every queue instance in

that queue. A resource that is assigned to a host is available from all queue instances

on that host. A resource that is assigned to the global host is available from all hosts

and all queues.

For consumable resources, the resource consumption is counted at the level where the

resource is assigned. For example, if a consumable is assigned at the host level, that

resource's consumption is counted for all queue instances on the host all together.

When the resource is consumed from one queue instance, it reduces the amount of

that resource available for all the queue instances on that host. If a resource is defined

at more than one level, it is tracked at all levels where it is defined. At any level, the

most restrictive value applies. For example, if a consumable is assigned at the global

host level with a value of 10, at host A with a value of 20, and at host B with a value of

5, there will be 10 of that consumable available to be shared among all hosts in the

cluster. Only 5 of that consumable, however, can be in use at a time on host B. Even

though host A defined the consumable with a higher value than at the global host, that

host is still restricted to the global value of 10. A host cannot offer more of a resource

than is available globally.

Other Concepts
The Sun Grid Engine software uses several other abstractions for modeling other parts

of a cluster. In brief, they are:

• Projects – used for access control, accounting, and the ticket policies discussed in

the next chapter. Projects provide a way to aggregate together jobs that serve a

common purpose.

• Users – used for the ticket policies discussed in the next chapter.

• Users l ists – used for managing access control and the ticket policies discussed in

the next chapter, user lists come in two flavors, access control lists and

departments. Access control lists (ACLs) are used to grant or deny access to

resources and privileges. Departments are only used for the ticket policies and

accounting and provide a way to aggregate together users in a common

organization.

• Parallel Environments – used by parallel jobs to start and stop the parallel

framework used by a job to synchronize and communicate among slave tasks. MPI is

a common example.

• Checkpointing Environments – used by jobs of any type to enable checkpointing

through an external checkpointing facility.

• Execution Hosts – represent the configuration of an execution host's stateful

characteristics.

• Host Configurations – represent the configuration of an execution host's

8 Introduction to Sun Grid Engine Sun Microsystems, Inc

behavioral characteristics.

• Calendars – used to enable, disable, suspend, and resume queues on a predefined

schedule.

9 Introduction to Sun Grid Engine Sun Microsystems, Inc

Chapter 2

Sun Grid Engine Scheduler
At the heart of a Sun Grid Engine cluster is the scheduler. It is responsible for

prioritizing pending jobs and deciding which jobs to schedule to which resources.

In previous versions of the Sun Grid Engine software, the scheduler was a separate

daemon that communicated directly with the qmaster. Starting with the Sun Grid

Engine 6.2 release, the scheduler is simply a part of the qmaster. Some documentation

(including this paper) may still refer to “the scheduler” as though it is an individual

entity, but what is really meant is “the scheduling function of the qmaster.”

When a user submits a job to a Sun Grid Engine cluster, the job is placed in a pending

list by the qmaster. Periodically a scheduling run will be triggered, which will attempt

to assign the highest priority jobs in the pending list to the most appropriate available

resources. A scheduling run can be triggered in three ways. First, scheduling runs are

triggered at a fixed interval. In a default Sun Grid Engine installation, scheduling runs

are triggered every fifteen seconds. Second, a scheduling run may be triggered by new

job submissions or by notification from an execution daemon that one or more jobs

have finished executing. In a default Sun Grid Engine installation, this feature is not

enabled. Third, an administrator can trigger a scheduling run explicitly through the

qconf -tsm command, which can be useful when troubleshooting the cluster.

The process of scheduling a job has two distinct stages, which are described in detail

below. In the first stage, job selection, the qmaster sorts the jobs in order of priority.

Job priority is derived from scheduler policies. A job may receive priority because of

who submitted it, what resources the job needs, by when the job must be started, how

long the job has been waiting to start, or for a variety of other reasons. In the second

stage, job scheduling, the sorted list of pending jobs is assigned to job slots in order of

priority. If there are more jobs in the pending list than there are free job slots, the

lower priority jobs will remain pending until the next scheduling run.

Job Selection
Job selection is the first stage of the scheduling process, in which every job in the

pending job list is assigned a priority, and the entire list of sorted according to priority

order. The assignment of priority is driven by the active set of scheduling policies.

The Sun Grid Engine qmaster provides a series of scheduling policies to allow

administrators to model the business rules that govern the use of the cluster's

resources. The qmaster offers policies in three general classes: ticket policies, urgency

policies, and the custom policy. The combination of the priorities assigned by each of

the classes of policies is used to produce the total priority for each job. The list of

pending jobs is then sorted according to that total priority. If no active scheduling

policies apply to any of the pending jobs, the order of the pending job list will not

change. All things being equal, jobs are scheduled in first come, first served order.

Scheduler Settings

When installing the Sun Grid Engine

qmaster, the choice is offered among

“Normal,” “High,” and “Max” scheduling

settings. The normal and high settings

cause the scheduler to run at a fixed

fifteen-second interval with immediate

scheduling disabled. The max setting

causes the scheduler to run at a two-

minute fixed interval with additional

scheduler runs four seconds after any job is

submitted of ends.

10 Sun Grid Engine Scheduler Sun Microsystems, Inc

What follows is a high-level overview of the available scheduling policies and some

general guidance as to when they should be employed.

Ticket Policies

The ticket policies are so named because they use ticket distribution to determine job

priorities. The general idea of a ticket policy is that one starts with a predefined

number of tickets. Those tickets are then distributed out to the jobs in the pending job

list based on the policy configuration. After all the tickets have been handed out, the

total number of tickets possessed by each job represents that job's relative priority

according to that policy.

The three ticket policies are the share tree (or fair-share) policy, the functional ticket

policy, and the override ticket policy. The ticket counts assigned to a job by each policy

are combined together to create a final ticket count that represents that job's relative

priority according to the ticket policies. (The exact details of how the three ticket

policies' ticket contributions are combined together is actually a complex topic well

beyond the scope of this paper.)

Share Tree Policy

The share tree policy attempts to assign users and projects a targeted share of the

cluster's resources. The share tree policy should be used when fair sharing of resources

is desired. A common case for using the share tree policy is when two or more groups

pool their resources into a single cluster, but each wants to be assured access to as

many resources as the group contributed to the cluster. For example, an administrator

might configure the share tree policy to give the QA department 30% of the cluster's

resources, as 30 of the 100 servers in the cluster were purchased using budget from the

QA department. The user DanT might be assigned 25% of the QA department's share

(or 7.5% of the total cluster's resources) because DanT's work takes precedence over

the work of the other 8 members of the team who will share the remaining 75% of the

QA department's share (or 22.5% of the total cluster's resources).

The share tree policy is named for the way that the target resource shares are defined.

Administrators set up target resource shares in a usage (or “share”) tree. The top node

of the tree represents all of the cluster's resources. At each node that has children

(nodes attached to it), the tickets representing the resource share for the node are

divided among the node's children (that have pending jobs) according to the child

nodes' target shares. The final ticket counts for the leaf nodes of the tree are then

distributed to the jobs belonging to those users and projects. The tickets assigned to

each job in this way are that job's total share tree ticket count and represent that job's

relative priority according to the share tree policy. An example of share tree resource

distribution is shown below in Figure 3.

11 Sun Grid Engine Scheduler Sun Microsystems, Inc

An example may help to clarify the process. Assume that the share tree shown in

Figure 3 is the share tree configured for the share tree policy. Also assume that the

share tree policy is configured to start with 1000 tickets. The user DanT, from the QA

department, has one pending job, and a user working on Project X also has a pending

job. The first step is to assign all 1,000 tickets to the root node, the one labeled

“cluster.” Next, the root node's tickets are divided among its children with pending

jobs according to their shares. Both the QA department and Project X have pending

jobs, but the engineering department does not. The 1000 tickets from the root node

will therefore be divided between just the QA department and Project X, giving the QA

department 600 tickets and Project X 400 tickets. (Relative shares are preserved.)

Because the Project X node has no children, that node's 400 tickets are not further

subdivided. All 400 tickets go to the one pending job for Project X. The QA department

node does have children, though, so its 600 tickets are further subdivided. However,

only the user DanT from the QA department has a pending job, so the DanT node

inherits all 600 tickets from the QA department node. Because the DanT node has no

children, the 600 tickets are not further subdivided. All 600 tickets go to the pending

job from the user DanT. In the end, the user DanT's pending job receives 50% more

tickets than the pending job from Project X, giving the pending job from the user DanT

a higher relative priority.

(In reality the above example is conceptually correct, but is mathematically incorrect

according to the actual behavior of the share tree policy. In order to preserve

submission order among jobs with equal priority, additional modifiers are applied to

the ticket counts for each node, resulting in a somewhat unpredictable ticket count for

any given node.)

Another important property of the share tree policy is that it is historical, meaning that

Figure 3: Example Share Tree

12 Sun Grid Engine Scheduler Sun Microsystems, Inc

past resource consumption is taken into account when calculating target resource

shares. In other words, the share tree policy tries to achieve the target resource shares

averaged over a period of time, not just at any single point in time. The following

graph shows that concept more clearly.

By default, the share tree policy is inactive. The share tree policy should not be used in

conjunction with the functional ticket policy as the resulting level of complexity makes

scheduling decisions difficult to understand, debug, or tune.

Functional Ticket Policy

The functional ticket policy is similar to a non-historical, single-level share tree policy.

It assigns tickets based on four functional categories: users, departments, projects, and

jobs. The functional ticket policy should be used when the objective is to set relative

priorities among users, departments, projects and/or jobs, but when assigned resource

shares are not needed. An example of when the functional ticket policy is useful is an

organization with multiple projects of varying priorities that are competing for

resources.

Administrators can assign a functional ticket share to any user, department, project, or

job to represent the relative ticket share for that user, department, project or job

within its functional category, ultimately translating into relative job priorities. If a

particular user, department, project, or job has no functional ticket share assigned, it

will receive no functional tickets for its category.

For example, the user DanT has been assigned a functional ticket share of 10. He works

in the engineering department, which has been assigned a functional ticket share of

20. The user Andy has been assigned a functional ticket share of 20, but he works in

the QA department, which only has a functional ticket share of 5. If DanT and Andy

have jobs pending at the same time, DanT's job will get half as many tickets in the user

category as Andy's job (DanT's 10 versus Andy's 20), but will get four times as many

tickets in the department category (The engineering department's 20 versus the QA

Figure 4: Example of Share Tree Policy Target Resource Share Management

13 Sun Grid Engine Scheduler Sun Microsystems, Inc

department's 5), likely resulting in an overall higher ticket count and hence a higher

relative priority. Note that because neither job receives tickets in the project or job

categories as neither job was assigned a project or job function ticket share. After

tickets have been assigned to jobs according to the four categories, the ticket

assignments are summed for each job to produce a total functional ticket count, which

represents that job's relative priority according to the functional ticket policy. (As with

the share tree policy example, this example is conceptually correct but leaves out the

additional ticket count modifiers used to preserve submission order among jobs of the

same priority. These additional modifiers make predicting actual ticket counts

extremely difficult.)

Unlike the share tree policy, the functional ticket policy has no memory of past

resource usage. All users, departments, projects, and jobs are always assigned tickets

purely according to their functional ticket shares. The following graph shows the

concept more clearly.

By default, the functional ticket policy is inactive. The functional ticket policy should

not be used in conjunction with the share tree policy as the resulting level of

complexity makes scheduling decisions difficult to understand, debug, or tune.

Override Ticket Policy

The override ticket policy is the simplest ticket policy. Its purpose is to give

administrators the ability to temporarily influence the other ticket policies without

having to change those policies' configurations. The override ticket policy allows an

administrator to assign a user, department, project, or job an arbitrary number of extra

tickets. In the case of users, departments, or projects, those tickets are distributed

among the pending jobs that belong to them. Tickets can also be assigned directly to a

pending job. The override tickets for each job are summed together to give a total

override ticket count that represents that job's relative priority according to the

override ticket policy.

Figure 5: Example of Functional Ticket Policy Target Resource Share Management

14 Sun Grid Engine Scheduler Sun Microsystems, Inc

The override ticket policy is useful whenever either of the other two ticket policies is in

use. It makes little sense to use on its own, however, as it is neither as flexible as the

functional ticket policy nor as straightforward as the custom policy.

An example use of the override ticket policy might be a project that is running late and

needs its remaining work to be completed as soon as possible. An administrator could

assign override tickets to that project, effectively boosting that project's jobs' ticket

counts and hence their relative priority. When the project's work has been completed,

the administrator can then remove the override tickets, returning the cluster to

normal.

It is important to remember that the total ticket counts for each job from each of the

three ticket policies will be combined together to produce a final total ticket count that

represents that job's relative priority. Because the tickets are combined together, the

override ticket policy effectively adds extra tickets to the totals produced by the other

policies. Because simultaneous use of both the share tree policy and the function

ticket policy is highly discouraged, in most cases “the other policies” is really “the

other policy,” making the override ticket policy even more powerful.

The override ticket policy is active by default, though it has no effect until an

administrator makes override ticket assignments.

Urgency Policies

The urgency policies assign priority to jobs based on the jobs' states. The three

urgency policies are the wait time policy, the deadline policy, and the resource urgency

policy. The urgencies assigned to each job by each of the urgency policies are

combined together to create a total job urgency that represents that job's relative

priority.

Wait Time Policy

As a job remains in the pending queue, the wait time policy increases the urgency for

that job. The urgency for a job in the pending queue increases linearly from the time

that it is first submitted until the job is finally scheduled. As the urgency is unbounded,

the wait time policy guarantees that a job that remains in the pending list long enough

will eventually become the highest priority job in the list.

The wait time policy can be useful for preventing job starvation. If other policies

produce large, consistent differences in priority for jobs from different users or groups,

the wait time policy can help ensure that the lower priority jobs will eventually get a

chance to run. The wait time policy does not solve the problem of starvation of jobs

with large resource requirements, however. To solve that problem, see the sections on

resource reservation and advance reservation.

By default, the wait time policy is inactive.

15 Sun Grid Engine Scheduler Sun Microsystems, Inc

Deadline Policy

One of the properties of a job's definition is the job's deadline. The deadline is the

time by which the job must be scheduled. As a job approaches its deadline time, the

urgency of that job increases exponentially in an attempt to make sure the job is

scheduled in time. A deadline job will reach its maximum urgency at its deadline time,

and it will maintain that urgency until it is finally scheduled.

Because the deadline policy has a potential for abuse, the ability to submit deadline

jobs is restricted to a limited set of users. In order to submit a job with a deadline, a

user must be a member of the deadlineusers group. By default, the deadline

policy is active, but no users are members of the deadlineusers group.

The deadline policy is important for situations where work needs to be processed in a

timely manner. Using the deadline policy, jobs with start time or completion deadlines

can be guaranteed to move to the front of the pending job list as their deadlines

approach. The deadline policy does not solve the problem of starvation of jobs with

large resource requirements, however. To solve that problem, see the sections on

resource reservation and advance reservation.

By default, the deadline policy is active, but no users are members of the
deadlineusers group.

Resource Urgency Policy

If some resources in a cluster are particularly valuable, it might be advantageous to

make sure those resources stay as busy as possible. A good example is high-cost

application licenses. If an organization is paying $20,000 a year for an application

license, it is better that it be in use while a $2,000 server is idle than vice versa. To

facilitate the preferential scheduling of jobs that use costly resources, the Sun Grid

Engine software offers the resource urgency policy.

Every complex has an urgency value associated with it. For most complexes the

urgency value is 0. When a job is submitted with a hard request for a resource, it

inherits that resource's urgency value. If a job requests more than one resource or

multiples of a single resource, all the urgency values are summed together to produce

a total resource urgency for the job.

By default, the only complex with a non-zero urgency value is the slots complex, which

is a queue-level consumable that represents available job slots. All jobs implicitly make

a hard request for the slots consumable, so what is the point of it having an urgency

value? Some jobs, namely parallel jobs, implicitly request multiple job slots. A parallel

job that requests four job slots gets four times the urgency of a batch job that, by

definition, only requests one job slot. This increased urgency means that if a batch job

and a multi-slot parallel job were submitted at exactly the same time, the parallel job

would start out at a higher urgency than the batch job and hence would likely be

scheduled first. Of course, other resource requests and other policies could affect the

jobs' final priorities.

16 Sun Grid Engine Scheduler Sun Microsystems, Inc

The resource urgency policy is extremely flexible and can be used to solve a wide

variety of problems beyond prioritizing use of costly resources. The topic of clever uses

for the resource urgency policy is far too broad to cover in this paper.

By default, the resource urgency policy is active, but only the slots complex has a

resource urgency assigned.

Custom Policy

The custom policy is so named because it can be used to allow an external entity to

dictate priority. It is also known as the POSIX policy because it uses a POSIX-standard

priority value range and as the priority policy because it deals directly with job

priorities.

The custom policy is very simple. Every job can be assigned a priority value that can

range from -1023 to 1024, the higher the priority value, the more priority that job has.

Two jobs with the same priority value have the same priority. By default, the custom

policy is the largest contributor to overall job priority, so the priority values assigned to

jobs have a very significant impact on their overall priority.

The custom policy has several common uses. Because a job's priority value can be set

by the user when submitting the job, users can use the custom policy to implement

relative job priorities among their own jobs. Because a job's priority value can be

changed after the job has been submitted, external systems can influence a cluster's

job scheduling order by adjusting the priority values for pending jobs. Because only

administrators can set a job's priority value above 0, the custom policy can be used by

an administrator to push a particular job to the front of the pending job list.

By default, the custom policy is active.

Job Scheduling
The second step of the scheduling process is the actual job scheduling, or assignment

of a job to a set of free resources. A job is matched to a job slot according to the

resources the job has requested (if any) and by the state of the queues and hosts with

available job slots. In a default Sun Grid Engine installation, a job slot is selected for a

job in a four-step process:

1. The l ist of queue instances is fi ltered according to hard resource

requests. A hard resource request is a request that must be fulfilled. For

example, a user might submit a job with a hard request for a Solaris x86 host.

Without such a host, the job cannot be run.

2. The remaining list of queue instances is sorted according to soft

resource requests. A soft resource request is a request that need not be fulfilled.

For example, a user might submit a job with a soft request for 8 gigabytes of virtual

memory. The job may still run on a machine with less virtual memory, but it might

take longer to execute. The queue instance list is sorted in order from queue

17 Sun Grid Engine Scheduler Sun Microsystems, Inc

instances that fulfill the most soft resource requests to queue instances that fulfill

the least number of soft resource requests.

3. The top tier of the sorted l ist of queue instances from the previous

step is further sorted according to queue sequence number. Each queue

has an administrator-assigned sequence number that indicates relative scheduling

preference. More than one queue is allowed to have the same sequence number.

The queue instance list is sorted in order from lowest sequence number to highest

sequence number. In a default installation, all.q is the only queue, and it has a

sequence number of 0. That sequence number of a queue is inherited by all of its

queue instances.

4. The top tier of the sorted l ist of queue instances from the previous

step is further sorted according to the host load. The “load” for a host is

calculated using the load formula defined by the load_formula scheduler

property. In a default installation, a host's “load” is defined as the average number

of processes in the OS's run queue over the last five minutes, divided by the number

of CPU cores at that host. The queue instance list is sorted in order from least

loaded to most loaded.

After the last round of sorting, the job is assigned to the queue instance at the front of

the list. This process is repeated for every job in the pending list.

Other Scheduling Features
In addition to scheduling policies, the Sun Grid Engine qmaster offers several other

facilities for controlling the manner in which jobs are scheduled. The most important

of these facilities are discussed below.

Resource Quota Sets

Resource Quota Sets (RQS) is a very important feature that gives administrators

immense control over how cluster resources are consumed. With RQS, administrators

can create sets of rules that govern what types of jobs are allowed to use what

resources and in what quantity.

Each RQS rule describes a resource limit and to which jobs the limit applies (known as

the filters). The filters are defined by submitting user or user group, destination host or

host group, destination queue, target project, or use of parallel environments, or any

combination thereof. For example, an RQS rule might limit jobs submitted by users in

the QA department for Project X to no more than 1 job slot per host for hosts in the

production host group. (In RQS syntax, such a rule might look like: limit users

@QA projects ProjectX hosts {@Production} to slots=1. For more

information on the RQS syntax, see the sge_resource_quota(5) man page6.)

Rules are aggregated together into rule sets. When evaluating the resource quotas for

a job, each rule set is evaluated, and the most restrictive limit produced by any of the

18 Sun Grid Engine Scheduler Sun Microsystems, Inc

rule sets is applied to the job. Within a rule set, the rules are evaluated one by one,

from top to bottom, until the first rule is found that applies to the job in question. That

rule then sets the limit for that rule set for that job.

Resource Reservation

When a job requests a large amount of resources, the possibility exists that the job may

never run, even though the cluster theoretically offers the required resources. A job

may be the highest priority job in the system, but if the entire set of resources needed

for the job to run are never all available at once, the job cannot be scheduled. Smaller,

lower priority jobs can keep enough of the resources occupied that the large-resource

job may stay pending indefinitely.

The solution to this problem is resource reservation. Resource reservation allows the

highest priority pending job to gather the resources it needs as they become available,

until it eventually has all the resources it needs to run. In order to minimize the impact

of reserving resources, the scheduler will backfill jobs onto the reserved resources

while waiting for the remaining resources to become available. Backfilling will only

happen with jobs the scheduler believes will complete before the remaining resources

are expected to become available.

Advance Reservation

There are times when it is important to coordinate the availability of cluster resources

with external factors such as individuals' schedules or equipment or facility availability.

For example, using the cluster for real-time processing of experimental data requires

that the compute resources be available at the time of the experiment. Advance

reservation allows a user to reserve required resources for a specific time and duration.

Once an advance reservation has been granted, the resources are blocked off for that

user at the specified times. Users can submit jobs to the reservation, or they can use

the reserved resources directly or not at all. In order to minimize the impact of

reserving resources, the scheduler will backfill jobs onto the reserved resources while

waiting for the start time of the reservation. Backfilling will only happen with jobs the

scheduler believes will complete before the reservation's start time.

Additional Information on Job Scheduling
Job scheduling with the Sun Grid Engine software is a very large topic. The Sun Grid

Engine software provides a wide variety of scheduling policies with a great degree of

flexibility. What is presented above only scratches the surface of what can be done

with the Sun Grid Engine 6.2 software. For a more complete discussion of Sun Grid

Engine job scheduling see the Sun Grid Engine 6.2 Admin Guide or Scheduler Policies

for Job Prioritization in the N1 Grid Engine 6 System7.

19 Sun Grid Engine Scheduler Sun Microsystems, Inc

Chapter 3

Planning a Sun Grid Engine Installation
A significant portion of the work involved in installing a Sun Grid Engine cluster is in

preparing the computing environment before installing the software. The Sun Grid

Engine software has some specific needs with respect to file systems, naming services,

and user accounts. Once the computing environment has been properly prepared, the

actual software installation is fairly simple.

Installation Layout
Before discussing how to configure the computing environment for a Sun Grid Engine

installation, it makes sense to first describe the layout of a typical installation.

The directory in which the Sun Grid Engine software is unpacked in known as the root

or SGE_ROOT (because the directory path is stored in the $SGE_ROOT environment

variable). The root directory contains all of the files required to run the Sun Grid

Engine software on one or more binary architectures. The root directory is self-

contained, meaning that the installation process does not create or modify files

anywhere other than in the root directory.

In order to support multiple binary architectures from the same root directory, the bin

and lib directories each have architecture-specific subdirectories. For example, on a

Solaris x86 host, the path to the qsub command will be $SGE_ROOT/bin/sol-

x86/qsub.

The installation process will create a new cell (or SGE_CELL) directory in the root

directory. The cell directory contains all of the files associated with the installation.

Because the cell directory is completely self-contained, multiple cells can coexist with

in the same root directory, with each cell representing a different Sun Grid Engine

installation. As long as the cells do not share port numbers or spool directory paths, all

cells under a given root may be simultaneously active, i.e. they may each have a

running set of daemons associated with them.

20 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

Each cell directory contains a common directory and a spool directory. The common
directory contains configuration files, utility scripts, and some cluster data files. The
spool directory contains some or all of the daemon log (messages) files and may

contain the qmaster's data store. For more information on data spooling, see below.

Most importantly, the common directory inside the cell directory contains the files

used by clients to find the qmaster. When a client attempts to contact the qmaster, it

reads the $SGE_ROOT/$SGE_CELL/common/act_qmaster file to find out on

which host the qmaster currently resides. (Because of fail-over, the qmaster may

switch hosts periodically.) For this reason, it is important that the cell directory be

shared with all potential client hosts, including the execution hosts.

QMaster Data Spooling
The majority of the configuration information for a Sun Grid Engine cluster, including

the complete data for all active jobs, is stored in the qmaster's data spool. The data

spool ensures that the state of the cluster is persistent between qmaster restarts. The

21 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

Sun Grid Engine software offers three options for the type of data spool as well as the

choice of where the data spool should be stored.

The qmaster's data spool can be based on flat files (known as classic spooling because

it was once the only option), a local Berkeley Database data store, or a remote Berkeley

Database server. The computing environment, the size of the cluster, and the expected

cluster throughput are key factors used in determining which spooling option is best.

Before making any decision based on performance expectations, one should always do

performance testing in the local compute environment to determine the best solution.

Some general rules exist that may be helpful in selecting the best-suited data spooling

option. For smaller clusters or clusters with less demanding throughput levels, classic

spooling offers greater flexibility and ease of administration. Large clusters or clusters

with high throughput will see better performance by using a local Berkeley data store.

For large or high-throughput clusters with strict high-availability needs, a remote

Berkeley Database server may be the best option.

The choice of data spooling options affects one's ability to configure high-availability

through Sun Grid Engine shadow masters. When the qmaster fails over to another

node via a shadow master, it must still have access to the data spool in order to

recreate the state of the cluster before the previous qmaster failed. A common

solution to this problem is to make the data spool available via a shared file system,

usually NFS. With local Berkeley spooling, this approach presents a problem as the

Berkeley Database software does not work with NFSv2 or NFSv3, and NFSv4 is not yet

widely adopted. Depending on the size and throughput of the cluster, classic spooling

or a remote Berkeley Database server can be used instead. If shadow masters will not

be used in the cluster, the qmaster's data spool need not be shared. In fact, in a

cluster with no shadow masters, it is possible to configure the cluster with no shared

file system at all.

The choice of data spooling options also affects where the data spool is located. For

classic spooling, the data spool is located in the qmaster's spool directory, which is

located at $SGE_ROOT/$SGE_CELL/spool/qmaster by default. As explained

above, however, a local Berkeley Database data store often cannot be located on an

NFS-shared file system. As mentioned in the previous section the cell directory is

usually NFS-shared. To resolve this conflict, the qmaster allows the local Berkeley data

store to be located in a directory that is different from the qmaster's spool directory.

Execution Daemon Data Spooling
Each execution daemon has its own spool directory. The default location for the spool

directory offered by the installation process is $SGE_ROOT/

$SGE_CELL/spool/<hostname>. Because the cell directory is usually NFS-shared,

that means that every execution daemon's spool directory is also NFS-mounted. No

process needs access to the execution daemon's spool directory aside from the

execution daemon, so it is almost always a good idea to configure every execution

22 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

daemon with a “local” spool directory, meaning that the spool directory is located on a

file system that is not NFS-mounted.

The execution daemon's spool directory contains information about the jobs currently

being executed by that execution daemon, so that in the event of a failure, the

execution daemon can try to reconstruct its previous state when it restarts. Among the

information stored in the execution daemon's spool directory is a local copy of every

job script being executed by that execution daemon. When a user submits a binary

job, only the path to the binary is passed on to the execution daemon. When a user

submits a script job, however, the script file is copied and sent along with the job.

When the execution daemon executes the job, it runs a local copy of the script saved

into its spool directory, rather than the original script file submitted by the user.

Managing User Data
The Sun Grid Engine software does not manage user data by default. Whatever data is

needed by users' jobs must already be accessible from the execution hosts, normally

via some kind of shared or distributed file system, such as NFS or the Lustre™8 file

system. It is very important to plan effectively for the handling of user data. Poorly

planned data management can bring even the best cluster to its knees.

A shared or distributed file system is the most common approach to data availability.

The advantage of a shared or distributed file system is that every job sees the same set

of data, and there are no data synchronization issues.

Shared and distributed file systems introduce their own set of problems. The quality of

service of an NFS file system tends to decay rapidly as the data throughput increases.

Lustre, on the other hand, has excellent scalability characteristics, but is a

heavyweight solution that requires a significant amount of administrative attention.

There are other alternatives, such as QFS or pNFS, and each comes with its own set of

advantages and limitations. If a shared or distributed file system is chosen as the

approach to data availability, be sure to examine all the options and pick one that is

appropriate for the computing environment and the needs of the jobs.

Instead of using a shared or distributed file system, the Sun Grid Engine software offers

some alternatives to making user data available at the execution hosts. The first and

most direct is the use of a prolog and epilog for data staging. A prolog is an executable

configured on the host or queue to be run before each job executed in that queue or on

that host. An epilog is the same, except that it runs after each job. A prolog and epilog

can be configured to read the data profile for a job from the job's environment

variables and stage the information in and/or the results out.

Data staging with a prolog and epilog works well for moderately sized data sets. For

jobs that need very large amounts of data, the data transfer can take a significant

amount of time. During that time, the job is not yet able to execute because it doesn't

have its data, but it is nonetheless occupying a job slot on the execution host. For jobs

with large data needs, an alternative approach to data staging is to submit a separate

23 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

data staging job(s). Using job dependencies (also known as workflows), a user can

submit a stage-out job that depends on the actual job that depends on a stage-in job.

For data sets that may be used by more than one job, either of the above solutions can

be amended by adding a complex that tracks the availability of the data set on each

machine. Jobs can then be submitted with a soft request for that resource. If a host is

available with the data set already loaded, the job will go there. If not, it will go to a

host without the data set loaded and load it there before executing the job.

Naming Services
The Sun Grid Engine software is relatively agnostic to the naming service used in the

compute environment. The most important thing is that the master host be able to

resolve the host names of all the execution hosts and client hosts, and that all client

hosts and execution hosts be able to resolve the name of the master host. Two host

name resolution configuration options are provided to simplify matters even further.

During the installation process, the installing user will be asked if all of the hosts in the

cluster share the same domain name. If the user answers 'yes,' the Sun Grid Engine

software will ignore domain names completely by truncating every host name at the

first dot ('.'). If the user answers 'no,' the Sun Grid Engine software will always use

fully qualified host names.

After the installation process in complete, the administrator has the option to set up a

host aliases file. Using the host aliases file, it is possible to force the Sun Grid Engine

software to always map one host name to another. For example, if an execution host

sets its host name as hostA, but the master host resolves that execution host's IP

address as hostB, the host aliases file can be used to always map hostA to hostB.

For more information, see the host_aliases(5)9 man page.

User Accounts
When an execution daemon executes a job, it executes the job as the user who

submitted the job. To enable that functionality, the name of the user who submitted

the job is included in the job's definition. It is important to note that it is the name of

the user who submitted the job, not the id, that is passed to the execution daemon. In

order to execute the job as that user, that user's name must exist as a user account on

the execution host. The execution daemon relies on the user management facilities of

the underlying OS to resolve the user name to a local account. How the user name is

resolved, be it through /etc/passwd or LDAP or some other mechanism, plays no

role, as long as the user name can be resolved to a local account.

Admin Accounts
To enable the use of a privileged port and the ability to execute jobs as other users, the

Sun Grid Engine daemons must be started as the root user. It is actually possible to

24 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

install and run a cluster as a non-root user, but then only that user will be able to run

jobs in the cluster. To limit the security impact of the daemons running as root, they

instead switch to a non-root user immediately after start-up. That non-root user can be

specified during installation, and is by convention chosen to be “sgeadmin.” If the

cluster is configured to use a non-root user in this way, it is important that the user

chosen have an account on the master machine and every execution host.

Service Ports
A Sun Grid Engine cluster requires two port numbers in order to function: one for the

qmaster, and one for the execution daemons. Those port numbers can be assigned in

one of two places, chosen during the cluster installation process. One option is to read

the port numbers from the sge_qmaster and sge_execd entries in the

/etc/services file. The other is to set the port numbers in the shells of client

users.

It is important to note that before interacting with a Sun Grid Engine cluster, every

client must setup his or her environment. For Borne shell (and derivative) users, that

means executing the command, “. $SGE_ROOT/

$SGE_CELL/common/settings.sh”. For C shell (and derivative) users, that

means executing the command, “source $SGE_ROOT/

$SGE_CELL/common/settings.csh”. Executing that command imports a set of

environment variables into the user's shell. Among the environment variables

imported are variables that contain the port number of the qmaster and execution

daemon in the case that they are not to be read from the /etc/services file.

It is usually more convenient not to read the port numbers from the /etc/services

file for two reasons. First, reading the port numbers from the /etc/services file

would mean adding the port numbers to the /etc/services file on every host in

the cluster. Second, if all cells read their port numbers from the (same)
/etc/services file, all cells must, by definition, be using the same port numbers,

which means that only one of the cells may be running at a time. Reading the port

number from the user's shell means that every cell can use different port numbers and

hence can be running simultaneously. Whether or not running more than one cluster

on the same set of hosts is a good idea or not is a different discussion.

Sun Grid Engine port numbers

Sun Grid Engine clusters will commonly be

found using three well-known sets of port

numbers. The first pair is 6444 and 6445

(for the qmaster and execution daemons,

respectively). Those port numbers are

assigned by IANA to Sun Grid Engine. The

second pair is 575 and 576. Those port

numbers were in common use during the

6.0 time frame, before the IANA port

numbers were assigned. The last pair is

535 and 536. Those port numbers were

popular in the 5.3 time frame and earlier.

The best practice is to use the IANA port

numbers for all new clusters. It is still

common, however, to see clusters using

one of the older sets of port numbers,

either for historical reasons or because the

installing administrator hasn't yet adopted

the new port numbers.

25 Planning a Sun Grid Engine Installation Sun Microsystems, Inc

Chapter 4

Suggested Sun Grid Engine Configurations
The Sun Grid Engine software provides administrators with a tremendous amount of

flexibility in configuring the cluster to meet their needs. Unfortunately, with so much

flexibility, it sometimes can be challenging to know just what configuration options are

best for any given set of needs. What follows is a series of common cluster

configurations based on various cluster parameters. It is likely that no one cluster

configuration described below will meet all the needs of any particular compute

environment, but by borrowing ideas and suggestions from one or more of the

suggested configurations, it should be possible to arrive at a reasonable cluster

configuration without a tremendous amount of research and planning.

General Suggestions
Some cluster configurations apply to clusters of any size. The following

recommendations apply universally:

• It is almost always a good idea to have the execution daemons use a local spool

directory. Having the execution daemon spool directories located on an NFS-

mounted file system can potentially have troubleshooting benefits, but only in the

smallest clusters do these benefits outweigh the cost.

• To give users the flexibility to increase their job priorities, it is almost always a good

idea to configure the default priority for all users' jobs to be less than 0. Users

cannot submit jobs with a priority greater than 0. The default priority, however, is

already 0, which means that users can only reduce the priorities of their jobs but not

increase them. Because users will rarely volunteer to reduce the priority of a job,

setting the default priority to a value less than 0 gives users some room to increase

the priority of jobs they feel are important. -100 is a suggested value. To set the

default priority value, see the -p option in the qsub(1) man page10 and the

sge_request(5) man page11.

Small Clusters

Small Cluster, Low Throughput

In Sun Grid Engine terms, a small cluster is one with roughly 64 or fewer hosts. The

Sun Grid Engine software does not measure scalability in terms of CPU cores. A Sun

SPARC Enterprise T5240 Server with 128 threads creates no more burden on the

qmaster than a single-socket, single-core blade server, aside from the obvious fact that

the qmaster will have to supply a 128-thread server with new jobs at a faster rate to

keep it busy than would be needed for a single-core server.

The other measure of a Sun Grid Engine cluster is job throughput: how many jobs are

26 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

processed by the system in a given unit of time. Low throughput for a Sun Grid Engine

cluster is anything less than about a job per minute or around 1,500 jobs a day.

For a small, low-throughput cluster that processes mainly batch and array jobs, the

following recommendations apply:

• Use classic spooling as the spooling method. Classic spooling will provide greater

flexibility, and with a small, low-throughput cluster, it will have no noticeable

performance penalty.

• Configure the scheduler for immediate scheduling by setting the

flush_submit_sec and flush_finish_sec scheduling parameters to a

number between 1 and 4. This value is the number of seconds to wait after a job is

submitted or a job ends (respectively) before triggering a scheduler run. The reason

for having a delay at all is to try to service multiple job submissions and completions

within a single scheduler run, rather than triggering a scheduler run for every such

event.

• Configure the scheduling interval to be somewhere between 4 to 8 seconds. With

immediate scheduling enabled as described in the previous point, the scheduling

interval has very little effect on the scheduling of jobs. It does, however, control the

freshness of the information reported by the scheduler. Reducing the scheduling

interval gives users a more up-to-date picture of the state of the pending jobs.

In some cases, it may be appropriate to set the scheduling interval to 1 second,

meaning that the scheduler will be running almost constantly. As long as the

master machine can handle the increased load, this approach can result in excellent

end-user performance characteristics. If the scheduling interval is set to 1,

flush_submit_sec and flush_finish_sec no longer need to be set.

• In a small, low-throughput cluster, the easiest approach is often to share the root

directory via NFS. Doing so makes all of the application binaries for all architectures

automatically available for all hosts, including clients. It also means that the cell

directories are all automatically shared. In such a cluster, the performance impact

should not be significant. It is nevertheless generally a good idea not to have both

the shared data for jobs and the root directory shared from the same NFS server.

• Starting with Sun Grid Engine 6.2, the schedd_job_info scheduler setting is set

to false by default as having it set to true can cause performance issues in large

clusters. Having schedd_job_info set to false, however, disables the ability of

qstat -j <jobid> to report why a job is still in a pending state. As this

information is extremely useful for end users, it is suggested in small, low-

throughput clusters that schedd_job_info be set back to true, with the caveat

that administrators should periodically check on the qmaster's memory

consumption, to make sure schedd_job_info isn't causing problems.

Small Cluster, Mixed Batch/Parallel Workload

27 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

For a small, low-throughput clusters that process mainly batch and array jobs, the

following recommendations apply in addition to the recommendations from the

preceding section:

• In order for a cluster to support parallel jobs, an administrator must configure one or

more parallel environments. A parallel environment configuration tells Sun Grid

Engine how to start, stop, and manage a parallel message-passing framework that is

used by parallel jobs. For information about configuring parallel environments in

general, see the Sun Grid Engine 6.2 Administration Guide and the sge_pe(5) man

page12. For help configuring parallel environments for specific frameworks, see the

Howto pages13 on the Grid Engine open source project site14.

• Because a resource-heavy parallel job can be starved by a series of lower-priority

batch jobs or smaller parallel jobs, it is recommended that resource reservation be

enabled by setting the max_reservation scheduler setting to a value greater

than 0. The value of max_reservation is the number of resource reservations

that will be honored during a scheduler run. If max_reservation is set to 2,

each scheduler run the two highest priority jobs with resource reservations will have

their reservations honored. See the Resource Reservation section in Chapter 2 of this

paper for more information.

• The purpose of the Sun Grid Engine software is to distribute workload as efficiently as

possible. In most cases, that means spreading the workload evenly across all of the

machines in the cluster. That strategy works well for batch jobs, but when the

workload consists of a mixture of batch jobs and shared-memory parallel jobs, it can

cause problems.

A shared-memory parallel job must run all of its job tasks on the same host in order

to communicate among them using a shared memory region. Imagine a cluster with

four 8-core hosts already executing eight batch jobs. The scheduler would naturally

have scheduled those eight batch jobs one per host. Now imagine that a user

submits an 8-way shared-memory parallel job. Even though there are still 28 job

slots available in the cluster, the shared-memory job cannot run because it needs

eight slots all on one machine.

The solution for clusters that host shared-memory parallel jobs is to segregate

shared-memory jobs from all other jobs, as long as there are no resource conflicts.

See Appendix A for details about how to configure a cluster in this fashion.

Mid-sized Clusters

Mid-Sized Cluster, High Throughput

A mid-sized Sun Grid Engine cluster is anywhere from around 64 hosts up to about 256

hosts. A high-throughput cluster is one that sees more than about 100 jobs per minute

or hundreds of thousands of jobs per day. For a mid-sized, high-throughput cluster, the

following recommendations apply:

28 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

• Because of the danger of performance problems, the schedd_job_info
scheduler setting should be set to false in a high-throughput cluster. With the

currently available versions of the Sun Grid Engine software, setting

schedd_job_info to false will make information unavailable to users about why

jobs are still pending. With a later release, a new means will be added to make that

information available to users.

• In a high-throughput cluster, the flush_submit_sec and

flush_finish_sec scheduler settings should be set to 4 or more seconds,

depending just how high the throughput is. At the same time, the scheduling

interval should be set to 3 minutes to reduce unnecessary scheduler overhead.

Because immediate scheduling is enabled by setting flush_submit_sec and

flush_finish_sec, the scheduling interval only governs the freshness of the

scheduling information in most cases. The scheduling interval does, however, serve

as the absolute upper bound on how long a job could wait before the scheduler

attempts schedule it.

• In a mid-sized cluster without shadow masters, the qmaster's data spool should be a

local Berkeley data spool. In larger clusters, the local Berkeley data spool performs

better than classic spooling. In particular, in high-throughput clusters classic

spooling could run out of inodes. Local Berkeley spooling has no such issue.

• Sharing the entire root directory for a mid-sized cluster may reduce performance.

The cost in additional overhead from increased NFS traffic could begin to outweigh

the ease of management afforded by a shared root directory, especially in clusters

that also run parallel jobs. In any case, the cell directories themselves should still be

shared.

• In a high-throughput cluster, repeated execution of the qstat command by users

can place significant burden on the qmaster. In such a cluster it is a recommended

best practice to either restrict access to the qstat command to administrative users

or to create a qstat wrapper that returns cluster status information from a cache

that is updated only periodically.

• A high-throughput cluster will generate a large amount of reporting data. The Sun

Grid Engine software has two outlets for reporting data. One is the accounting file

that is read by the qacct command, and the other is the reporting file that is read

by the Accounting & Reporting Console (ARCo).

When a users issues a qacct command, qacct will read the accounting file line by

line, until it has gathered the requested information. In a high-throughput cluster,

depending on the frequency with which the accounting file is rotated, the

accounting file could be very large, and the qacct command could take tens of

seconds to complete.

ARCo works very differently. Periodically ARCo will read and remove the contents of

the reporting file and store them in a relational database. When a user runs a query

using ARCo's web-based user interface, the information is retrieved from that

29 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

database, resulting in a much faster response time.

For high-throughput clusters, it is highly recommended that ARCo be established as

the preferred mechanism for retrieving historical reporting data, as opposed to the

qacct command.

• In larger, more active clusters, the various log and reporting files can grow quite

large. It is a recommended best practice to establish a file rotation schedule to keep

file sizes manageable. The files that may need to be rotated are:

— $SGE_ROOT/$SGE_CELL/common/reporting

— $SGE_ROOT/$SGE_CELL/common/accounting

— <qmaster spool>/messages

— <execd_spool>/messages

If the Accounting & Reporting Console is active, it will manage the reporting file

automatically.

Mid-Sized Cluster, Secure and Highly Available

By default the Sun Grid Engine installation process installs in an insecure mode. A

Certificate Security Protocol (CSP) secure installation option is available, however, that

uses secure certificates to verify user identity and to encrypt all data communications.

In order to install using CSP, use the -csp switch with the installation scripts. You can

find more information in the Installing Security Features chapter of the Sun Grid Engine

Installation Guide.

For end users and administrators, a CSP cluster is identical to an insecure cluster with

one exception. A CSP cluster has an additional administrative requirement. For each

user of the cluster, including the root user and the admin user, a certificate and private

key must be created in the master host's keystore directory (usually in /var/sgeCA)

and then copied into each user's $HOME/.sge directory by using the

$SGE_ROOT/util/sgeCA/sge_ca -copy command. If for any reason a user's

certificates change, they must be updated in both places.

As described in Chapter 1, the shadow master is the Sun Grid Engine software's built-in

high-availability solution. By configuring one or more shadow masters on hosts other

than the master host, unplanned downtime can be minimized. Should the qmaster

daemon or master host fail, one of the shadow hosts will start a new qmaster instance.

When configuring shadow masters for a cluster, the following recommendations

should be considered:

• In a highly- available cluster, the cell directory must be shared. When a client or

execution daemon attempts to connect to the qmaster, it first looks in the
$SGE_ROOT/$SGE_CELL/common/act_qmaster file to see which host is

currently the master host. For this reason, all hosts in the cluster must have access

30 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

to the cell directory.

• Shadow daemons in an HA cluster must also have access to the heartbeat file in the

qmaster spool directory. Recall that depending on the spooling method, the spool

directory may or may not actually house the data spool. The recommended best

practice, regardless of the spooling method used, is to place the qmaster's spool

directory in the default location, inside the cell directory. The cell directory must be

shared, as explained in the previous bullet, so placing the spool directory in the cell

directory means that it will be shared as well.

• When installing a shadow master, the installation process does not offer the option

to set the frequency with which the shadow master will check the qmaster's

heartbeat file (60 seconds by default) or how long the shadow master will wait after

discovering that the qmaster is no longer active before starting a new qmaster (5

minutes by default). To change those parameters, edit the $SGE_ROOT/

$SGE_CELL/common/sgemaster script to set the $SGE_CHECK_INTERVAL

and $SGE_GET_ACTIVE_INTERVAL variables appropriately. See the

sge_shadowd(8) man page15 for more details.

• When installing a cluster with shadow masters, there are three spooling options:

classic spooling over NFS, Berkeley spooling over NFSv4, or a remote Berkeley server.

Classic spooling over NFS is in most cases the best solution for a highly available

cluster. Because the cell directory must be shared, no additional administrative

work is required to enable classic spooling over NFS. If an HA NFS service is in place

(which is a recommended best practice for a highly available cluster), classic

spooling is automatically protected. Classic spooling in a regular cluster has poorer

performance than Berkeley spooling, but in an HA environment, the performance

cost is less significant. In very large or very high throughput clusters, the

performance characteristics of classic spooling may become an issue, at which point

a remote Berkeley server may be a better solution.

A Berkeley data spool over NFSv4 is often not an option as NFSv4 is not yet a widely

adopted standard. (The Berkeley Database software does not work with earlier NFS

versions.) Performance of a Berkeley spool is also significantly degraded when

running over NFS.

Because the cell directory must be shared in any case, using a remote Berkeley

server is only recommended in special cases, such as clusters with tens or hundreds

of thousands of simultaneously active jobs. The goal of installing a shadow master is

to eliminate a single point of failure in the cluster, but adding a remote Berkeley

server for spooling adds an additional single point of failure.

Large Clusters

Large Cluster, Medium Throughput

31 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

A large Sun Grid Engine cluster is one with more than 256 hosts. A medium-throughput

cluster is one that processes around 10 jobs per minute, or around 15000 jobs a day.

For a large, medium-throughput cluster, the following recommendations apply:

• Because of the danger of performance problems, the schedd_job_info
scheduler setting should be set to false in a medium-throughput cluster. With the

currently available versions of the Sun Grid Engine software, setting

schedd_job_info to false will make information unavailable to users about why

jobs are still pending. With a later release, a new means will be added to make that

information available to users.

• In a medium-throughput cluster, the flush_submit_sec and

flush_finish_sec scheduler settings should be set to 4 to 10 seconds. At the

same time, the scheduling interval should be set to 2 minutes to reduce unnecessary

scheduler overhead. Because immediate scheduling is enabled by setting

flush_submit_sec and flush_finish_sec, the scheduling interval only

governs the freshness of the scheduling information in most cases. The scheduling

interval does, however, serve as the absolute upper bound on how long a job could

wait before the scheduler attempts schedule it.

• In a large-sized cluster without shadow masters, the qmaster's data spool should be

a local Berkeley data spool. In large clusters, the local Berkeley data spool performs

better than classic spooling. In particular, in large clusters classic spooling could run

out of inodes. Local Berkeley spooling has no such issue.

• Sharing the entire root directory for a large cluster will reduce performance. The cost

in additional overhead from increased NFS traffic will likely outweigh the ease of

management afforded by a shared root directory. In any case, the cell directories

themselves should still be shared.

• Every execution daemon in a cluster reports its current status to the qmaster at a

predetermined interval, called the load report interval. By default, the load report

interval is 40 seconds. In a large cluster, the default load report interval may cause

excessive overhead as the qmaster processes the incoming reports. Depending on

the size of the cluster, a load report interval from 1 to 5 minutes may be appropriate.

Increasing the load report interval increases the amount of time that load report

data is allowed to become stale before being refreshed. Increasing the staleness of

the load report data is obviously not a desirable side-effect, but it is often an

acceptable trade-off for not overwhelming the qmaster with too many load reports.

Multi-Cluster
New with the Sun Grid Engine 6.2 release is the ability to configure multiple

cooperating clusters that are able to share resources using the Service Domain

Manager software. For many situations the enterprise cluster functionality of the Sun

Grid Engine software (like fair-share scheduling) is sufficient to allow multiple clusters

to be coalesced into one. In some cases, however, the individual clusters must retain

32 Suggested Sun Grid Engine Configurations Sun Microsystems, Inc

their independence, but would nonetheless profit from being able to share resources

among the individual clusters. In those cases, the Service Domain Manager software

included with the Sun Grid Engine 6.2 release may be the best solution.

Simply put, the Service Domain Manager migrates resources from clusters where they

are under-utilized into clusters where they are needed. The Service Domain Manager

software is driven by service-level objectives (SLOs) that define when a cluster is in need

of additional resources.

The following recommendations apply to Sun Grid Engine clusters that are to

participate in a Service Domain Manager managed multi-cluster and to the Service

Domain Manager configuration itself:

• The Service Domain Manager software does not currently have a notion of leasing

resources. Once a resource has been migrated to another cluster, it belongs to that

new cluster. In order to implement a form of resource leasing, every resource should

be assigned a property that labels the resource according to its original cluster

membership. Each cluster's Service Domain Manager agent should define a

PermanentRequestSLO with a low urgency that requests resources labeled as

belonging to that cluster. Such an SLO ensures that as borrowed resources are no

longer needed in other clusters, they will be returned to their “home” clusters.

• For resources that are not geographically co-located, the recommended best practice

is to assign each resource a property that labels the resource according to its

physical location. The Service Domain Manager agents for each cluster should then

translate that property into a Sun Grid Engine complex. Users with work that is

location-sensitive can then submit their jobs with a hard request for resources in the

appropriate physical location. The same technique can be applied to resolve

network differences.

33 Summary Sun Microsystems, Inc

Summary
The Sun Grid Engine software is a very flexible tool for increasing resource utilization

and overall job throughput while managing resource usage according to business

policies and goals. It is capable of scaling from the smallest departmental clusters all

the way up to the enormous Ranger cluster at the Texas Advanced Computing Center,

which boasts more than sixty-two thousand CPU cores and over one hundred terabytes

of aggregate memory.

It is also worthwhile to note that the Sun Grid Engine software is based on the Grid

Engine open source project. The Grid Engine open source project has a thriving

community of users and developers who are working with the software on a daily basis.

For questions about installation and configuration not covered in the Sun Grid Engine

documentation, the Grid Engine open source community can be an invaluable

resource. The community mailing lists, wiki, blogs, and howtos cover a broad range of

useful topics. See the Grid Engine open source project site for more information.

About the Author
Daniel Templeton has the formal title of Strategic Liaison Manager for the Sun Grid

Engine product team, but prefers to describe his job as, “talks a lot.” Formerly a

developer on the Sun Grid Engine and Service Domain Manager products, Daniel's main

contributions were to the Sun Grid Engine DRMAA implementation and the architecture

and design of the Service Domain Manager product. In his current role, he acts as both

a customer and community advocate, working to drive interest, adoption, and

customer satisfaction for the Sun Grid Engine and Service Domain Manager products.

Daniel would like to thank Miha Ahronovitz, Jeff Beadles, Chris Dagdigian, Roland

Dittel, Andreas Haas, Sandra Konta, Lubomir Petrik, Thomas Reutman, and Andy

Schwierskott for their feedback and contributions to this paper.

34 Summary Sun Microsystems, Inc

Appendix A

Configuring an SMP/Batch Cluster
Shared-memory parallel jobs execute in multiple job slots on a single host. They do so

in order to use a shared memory region for interprocess communications. Because of

the way that the Sun Grid Engine scheduler distributes workload, shared-memory

parallel jobs can have scheduling conflicts with regular batch and parallel jobs. To

prevent these conflicts, the cluster can be configured to segregate shared-memory

parallel jobs from the other jobs in the cluster as long as there are free resources. To

configure a cluster in this fashion, follow these steps:

 1. Create a queue for shared-memory jobs that is separate from the queue(s) for other

jobs.

 2. Change the queue_sort_method scheduler setting from load to seqno. The

default setting of load causes the scheduler to behave as described in the Job

Scheduling section in Chapter 2. Changing the sort method to seqno reverses the

order of steps 3 and 4 from the Job Scheduling section. Having steps 3 and 4

reversed means that the scheduler will first select a queue by sequence number and

then select the host from that queue that is least loaded.

 3. Assign sequence numbers to the queue instances for the shared memory queue in

monotonically increasing fashion, e.g. shared.q@host1:seq_no=0,

shared.q@host2:seq_no=1, shared.q@host3:seq_no=2, etc.

 4. Assign sequence numbers to the queue instances for the other queues in

monotonically decreasing fashion, e.g. all.q@host1:seq_no=50,

all.q@host2:seq_no=49, all.q@host3:seq_no=48, etc.

The effect of this configuration is to force the scheduler to place shared-memory jobs

first on host1, and when host1 is full, then on host2, etc. The scheduler will also

be forced to place all other jobs first on host51, and when host51 is full, then on

host50, etc. This dichotomy means that shared-memory jobs will only conflict with

other jobs when all the hosts are occupied. A less rigid solution would be to create two

or more host groups and to use the above sequence numbering scheme with those host

groups instead of with individual hosts. In that way, the scheduler is still allowed to

pick the least loaded host from each host group, instead of demanding that hosts are

filled in numerical order by sequence numbers.

Beginner's Guide to Sun Grid Engine 6.2 Sun Microsystems, Inc

© 2006 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, [insert all other Sun Product Names, Service Names, Program Names, Special Programs Logos, and slogans listed in Tmark and
referred to or displayed in the document] are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. [Include appropriate legends for any third-party marks that are
referred to or displayed in the document and listed in Tmark (because of contractual obligations).] Information subject to change without notice.

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

 Printed in USA XX/XX XX0000-0/#K

[1] Sun Grid Engine Installation Guide: http://wikis.sun.com/display/GridEngine/Installing+Sun+Grid+Engine
[2] DRMAA Working Group Home Page: http://www.drmaa.org/
[3] MPI Home Page: http://www-unix.mcs.anl.gov/mpi/
[4] Sun Grid Engine Administration Guide: http://wikis.sun.com/display/GridEngine/Administering+Sun+Grid+Engine
[5] NCBI BLAST Home Page: http://www.ncbi.nlm.nih.gov/BLAST/
[6] sge_resource_quota(5) Man Page:

http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman5/sge_resource_quot
a.html

[7] Scheduler Policies for Job Prioritization in the N1 Grid Engine 6 System:
http://www.sun.com/blueprints/1005/819-4325.html

[8] Lustre Product Page: http://www.sun.com/software/products/lustre/
[9] host_aliases(5) Man Page:

http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman5/host_aliases.html
[10] qsub(1) Man Page:

http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman1/qsub.html
[11] sge_request(5) Man Page:

http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman5/sge_request.html
[12] sge_pe(5) Man

Page:http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/htmlman5/sge_pe.html
[13] Grid Engine Howtos Page: http://gridengine.sunsource.net/howto/howto.html
[14] Grid Engine Open Source Site: http://gridengine.sunsource.net
[15] sge_shadowd(8) Man Page: http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/htmlman/

htmlman8/sge_shadowd.html

	Introduction to Sun Grid Engine
	Sun Grid Engine Scheduler
	Planning a Sun Grid Engine Installation
	Suggested Sun Grid Engine Configurations
	Summary
	Configuring an SMP/Batch Cluster

