3ware® SATA+SAS
Controller Card
Software User Guide

Supports the 9750-4I and 9750-8I Models

PN: 45414-00, Rev. A
November 2009
Document Description

Document 45414-00, Rev. A. November 2009.
This document will remain the official reference source for all revisions and
releases of this product until rescinded by an update.

Disclaimer

It is the policy of LSI Corporation to improve products as new technology,
components, software, and firmware become available. LSI reserves the right
to make changes to any products herein at any time without notice. All
features, functions, and operations described herein may not be marketed by
LSI in all parts of the world. In some instances, photographs and figures are of
equipment prototypes. Therefore, before using this document, consult your
LSI representative for information that is applicable and current. LSI DOES
NOT ASSUME ANY RESPONSIBILITY OR LIABILITY FOR THE USE
OF ANY PRODUCTS DESCRIBED HEREIN EXCEPT AS EXPRESSLY
AGREED TO IN WRITING BY LSI.

LSI products are not intended for use in life-support appliances, devices, or
systems. Use of any LSI product in such applications without written consent
of the appropriate LSI officer is prohibited.

License Restriction

The purchase or use of an LSI Corporation product does not convey a license
under any patent, copyright, trademark, or other intellectual property right of
LSI or third parties.

Copyright Notice

© 2009 LSI Corporation. All rights reserved.

Trademark Acknowledgments

LSI, the LSI logo design, 3ware®, 3DM®, StorSwitch®, and TwinStor® are all
registered trademarks of LSI Corporation. StorSave, and StreamFusion are
trademarks of LSI. Linux® is a registered trademark of Linus Torvalds in the
United States, other countries, or both. SUSE® is a registered trademark of
Novell, Inc. Windows® is a registered trademark of Microsoft Corporation in
the United States and other countries. Firefox® is a registered trademark of
the Mozilla Foundation. Safari® is a registered trademark of Apple Inc.,
registered in the U.S. and other countries. PCI Express® is a registered
trademark of PCI-SIG®. All other brand and product names may be
trademarks of their respective companies.
Table of Contents

About this User Guide viii
How this User Guide is Organized ix
Conventions ... x
Screenshots .. x
Using the 3ware HTML Bookshelf xi

Chapter 1. Introducing the LSI 3ware SATA+SAS RAID Controller Card 1
Highlights of the 10.0 Release 1
System Requirements 2
Understanding RAID Concepts and Levels 5
 RAID Concepts .. 5
 Available RAID Configurations 6
 Determining What RAID Level to Use 11
 Using Drive Capacity Efficiently 12
 Support for Over 2 Terabytes 13
3ware Tools for Configuration and Management 14
Monitor, Maintenance, and Troubleshooting Features 15

Chapter 2. First-Time RAID Configuration Using 3BM 18
Basic Steps for Creating a Unit 18
Specifying a Hot Spare 26
Making Drives Visible to the Operating System 27
Checking the Motherboard Boot Sequence 27
What Next? .. 27

Chapter 3. Getting Started with Your 3ware RAID Controller 28

Chapter 4. Driver Installation 32
Driver Installation Under Windows 33
 Materials Required 33
 Creating a 3ware Driver Disk 34
 Installing the 3ware Driver and Windows on a New RAID Unit 34
 Installing the 3ware Driver on a Windows System that Boots from a Different Device 36
 Making Units Managed by a 3ware Controller Available to Windows 38
Driver Installation Under Linux 39
 Obtaining 3ware Linux Drivers 40
 Driver Installation Under Red Hat or Fedora Core Linux 41
 Driver Installation Under SUSE Linux 46
 Compiling a 3ware Driver for Linux 50

Chapter 5. 3ware BIOS Manager (3BM) Introduction 51
Starting 3BM .. 51
Exiting the 3BM Configuration Utility 53
Working in the 3BM Screens 54
Adjusting BIOS Option Settings 56
Displaying Information About the Controller and Related Devices 59
Getting Help While Using 3BM 60

Chapter 6. 3DM 2 (3ware Disk Manager) Introduction 61
Chapter 9. Maintaining Units ... 139
Checking Unit and Drive Status through 3DM 139
Viewing a List of Drives .. 141
Enclosure Drive LED Status Indicators 142
Unit Statuses .. 143
Drive Statuses .. 144
About Degraded Units .. 144
About Inoperable Units .. 145
Locating a Drive by Blinking Its LED 145
Alarms, Errors, and Other Events .. 147
Viewing Alarms, Errors, and Other Events 147
Using the Alert Utility Under Windows 148
Downloading an Error Log ... 150
Viewing SMART Data About a Drive 150
Background Tasks .. 151
About Initialization ... 152
About Verification ... 155
Using Auto Verification .. 157
Starting a Verify Manually ... 158
Rebuilding Units ... 160
Cancelling a Rebuild and Restarting It with a Different Drive 165
Working with the Background Task Mode 165
Setting the Background Task Mode .. 168
Setting Background Task Rate .. 168
Background Task Prioritization ... 169
Scheduling Background Tasks ... 169
Viewing Current Task Schedules ... 171
Turning On or Off Use of a Rebuild/Migrate Task Schedule 171
Selecting Advanced or Basic Verify Schedules 172
Removing a Task Slot from a Schedule 173
Adding a New Task Schedule Slot .. 173
Selecting Self-tests to be Performed 174
Chapter 10. Maintaining Your Controller 176
Determining the Current Version of Your 3ware Driver 176
Updating the Firmware and Driver 177
Downloading the Driver and Firmware 178
Updating the Firmware Through 3DM 2 179
Updating the Firmware Through DOS Using the 3ware Bootable CD 180
Updating the 3ware Driver Under Windows 181
Updating the 3ware Driver Under Red Hat or Fedora Core 183
Updating the 3ware Driver Under SUSE 185
Viewing Battery Information ... 186
Testing Battery Capacity ... 187
Compliance and Conformity Statements ..317
 FCC Radio Frequency Interference Statement 317
 Canadian Compliance Statement .. 318
 European Community Conformity Statement 318

Warranty, Technical Support, and Service ..319
 Limited Warranty .. 319
 Warranty Service and RMA Process ... 320
 LSI Technical Support and Services .. 321
 Sales and ordering information .. 321
 Feedback on this manual .. 321

Index ..322
About this User Guide

This document, 3ware SATA+SAS RAID Controller Card Software User Guide, Version 10.0, provides instructions for configuring and maintaining RAID units on LSI® 3ware® 9750 series RAID controllers, using software and firmware version 10.0.

This guide assumes that you have already installed your 3ware RAID controller and drives in your system and any enclosures, if you have them. If you have not yet done so, see the installation guide that came with your controller. If you do not have the printed copy, a PDF of the installation guide is available on your 3ware CD, or you can download it from: http://www.lsi.com/channel/ChannelDownloads.

There are often multiple ways to accomplish the same configuration and maintenance tasks for your 3ware RAID controller. This manual includes instructions for performing tasks using two tools:

- 3ware BIOS Manager (3BM), which runs at the BIOS level
- 3ware Disk Manager 2 (3DM® 2), which runs in a browser

You can also perform many tasks at the command line, using 3ware’s Command Line Interface (CLI). The CLI is described in a separate manual: 3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0. Information from both this Users Guide and the CLI Guide are also available in the 3ware HTML Bookshelf, available in the 3ware Documentation folder and on your 3ware CD. (For more information, see “Using the 3ware HTML Bookshelf” on page xi.)
How this User Guide is Organized

Table 1: Chapters and Appendices in this Guide

<table>
<thead>
<tr>
<th>Chapter/Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>Provides an overview of product features for the 3ware 9750 controller models. Includes system requirements and an introduction to RAID concepts and levels.</td>
</tr>
<tr>
<td>2. Getting Started</td>
<td>Provides a summary of the process you should follow to get started using your 3ware RAID controller.</td>
</tr>
<tr>
<td>3. First-Time RAID Configuration Using 3BM</td>
<td>Provides step-by-step instructions for configuring RAID units in the BIOS (3BM) if you have just installed the controller.</td>
</tr>
<tr>
<td>4. Driver Installation</td>
<td>Describes how to install drivers for the 3ware controller if you have just installed and configured it. Includes information for Windows®, and Linux®.</td>
</tr>
<tr>
<td>5. 3ware BIOS Manager (3BM)</td>
<td>Describes the basics of using 3BM.</td>
</tr>
<tr>
<td>6. 3ware Disk Manager 2 (3DM 2)</td>
<td>Describes the basics of using 3DM. Also includes information about installing and uninstalling 3DM, and how to start the 3DM process manually, if required.</td>
</tr>
<tr>
<td>7. Configuring Your Controller</td>
<td>Describes how to view details about the controller, check its status, and change configuration settings that affect the controller and all associated drives.</td>
</tr>
<tr>
<td>8. Configuring Units</td>
<td>Describes how to configure new units and hot spares, change existing configurations, move units from one controller to another, and set unit policies.</td>
</tr>
<tr>
<td>9. Maintaining Units</td>
<td>Describes how to check unit and drive status, review alarms and errors, schedule background maintenance tasks, and manually start them, when necessary or desirable. Includes explanations of initialization, verify, rebuild, and self-tests.</td>
</tr>
<tr>
<td>10. Maintaining Your Controller</td>
<td>Describes how to update the driver and firmware. Also includes information about checking battery status on a BBU (Battery Backup Unit).</td>
</tr>
<tr>
<td>11. Enclosure Management</td>
<td>Describes how to view details about an enclosure, check the status of enclosure components, and locate specific enclosure components by blinking an associated LED.</td>
</tr>
<tr>
<td>12. 3DM 2 Reference</td>
<td>Describes the features and functions on each of the pages in 3DM.</td>
</tr>
<tr>
<td>13. Troubleshooting</td>
<td>Provides common problems and solutions, and explains error messages.</td>
</tr>
</tbody>
</table>
Table 1: Chapters and Appendices in this Guide (Continued)

<table>
<thead>
<tr>
<th>Chapter/Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Glossary</td>
<td>Includes definitions for terms used throughout this guide.</td>
</tr>
<tr>
<td>B. Software Installation</td>
<td>Provides instructions for installing software management tools (3DM 2 and CLI) and documentation.</td>
</tr>
<tr>
<td>C. Compliance and Conformity Statements</td>
<td>Provides compliance and conformity statement.</td>
</tr>
<tr>
<td>D. Warranty, Technical Support, and Service</td>
<td>Provides warranty information and tells you how to contact technical support.</td>
</tr>
</tbody>
</table>

Conventions

The following conventions are used throughout this guide:

- **3BM** refers to the 3ware BIOS Manager.
- **3DM** and **3DM 2** both refer to the 3ware Disk Manager, version 2.
- In the sections that describe using 3DM 2, **current controller** is used to refer to the controller which is currently selected in the drop-down list.
- **Unit** refers to one or more disks configured through 3ware to be treated by the operating system as a single drive. Also known as an array. Array and unit are used interchangeably throughout this manual.
- **Boldface** is used for buttons, fields, and settings that appear on the screen.
- **Monospace font** is used for code and to indicate things you type.

Screenshots

The screenshots in this documentation are examples only, and may not exactly reflect the operating system and browser you are using. 3ware software works on a number of different operating systems, including Mac OS X, Microsoft Windows®, FreeBSD®, and Linux®, and runs in a number of different browsers. In addition, the version numbers shown in screenshots for drivers, firmware, and software may not match your version. For the current released and tested version number, see the latest release notes.

In addition, the fields and columns in 3DM 2 vary for different models of 3ware RAID controllers. If you have multiple controllers of different models, you may notice some differences when switching between them in 3DM. For example, when displaying information about the 9750 or 9690SA controllers, 3DM displays “VPorts” (for virtual port) on some screens while for earlier controllers the label is “port.”
Using the 3ware HTML Bookshelf

The 3ware HTML Bookshelf is an HTML version of this user guide and the CLI Guide, combined as one resource. It is available on your 3ware CD, in the /doc/3wareHTMLBookshelf folder.

To make use of the 3ware HTML Bookshelf

To launch the bookshelf at the opening page:

- Navigate to the folder /doc/3wareHTMLBookshelf on the 3ware CD and double-click the file index.html.

When you use either of these methods, a navigation panel at the left automatically opens. It includes a Table of Contents, Index, and Search.

You can also open the bookshelf by double-clicking any other html file in the 3wareHTMLBookshelf folder. When you open an individual file, the navigation pane does not automatically open. In this case, you can display the navigation pane by clicking the Show Navigation button at the left.

Figure 1. Navigation Button in the 3ware HTML Bookshelf Window

Click the Show Navigation button to display the Table of Contents
Note: The 3ware HTML Bookshelf is created as a set of HTML documents that are often displayed from a website. When installed on your personal computer, some browsers flag them as "active content," and require your approval before displaying the content.

If you see messages similar to the following, you must confirm the display of active content in order to see the pages.
Introducing the LSI 3ware SATA+SAS RAID Controller Card

LSI 3ware RAID controllers deliver full-featured, true hardware RAID to servers and workstations. 3ware RAID controllers offer Serial Attached SCSI (SAS) and Serial ATA (SATA) interfaces. Combined with an advanced RAID management feature-set that includes web-based, command-based, and API (application programming interface) software components, LSI RAID controllers provide compelling RAID solutions.

This section introduces the features and concepts of 3ware RAID controllers. It is organized into the following topics:
- Highlights of the 10.0 Release
- System Requirements
- Understanding RAID Concepts and Levels
- 3ware Tools for Configuration and Management
- Monitoring, Maintenance, and Troubleshooting Features

Highlights of the 10.0 Release

Version 10.0 of the 3ware RAID Software and Firmware provides the following features and benefits to the 3ware 9750 model RAID controllers.
- Support for 6 Gbps SATA+SAS RAID On-a-Chip devices available on the 3ware 9750 RAID controllers, with continued support for the 3ware RAID software feature-set.
- Read cache settings let you enable either Basic Read Caching or Intelligent Read Caching to improve performance.
- Background task mode provides low latency settings to improve performance in video and audio applications.
- Enclosure alarm support allows you to turn off or mute audible alarms in supported enclosures that provide alarms.
• Advanced Content Streaming, a performance feature, provides increased speeds for streamed data, such as video playback and editing, through improved algorithms.

• Rapid RAID Recovery increases the speed with which a degraded unit can be rebuilt. It can also increase the speed of verification or initialization that may occur in the event of an unclean shutdown.

• Improved and simplified auto-verification and scheduling to help insure your RAID units are verified on a regular basis.

• Drive performance monitoring provides statistics to help trouble-shoot performance issues.

• Simultaneous RAID 6 parity generation to maximize RAID 6 performance

• StreamFusion™ optimizes RAID 5 and RAID 6 disk accesses to maximize application performance under heavy loads

• StorSave™ BBU with write journaling optimizes data protection and performance

• RAID levels 0, 1, 5, 6, 10, 50, and Single Disk

• With the 9750 models:
 • PCI Express® x8 Gen 2.0
 • Ability to have SAS and/or SATA drives on the same controller (see “Drive Requirements” on page 3)
 • Connectivity with up to 96 single-ported drives or 48 dual-ported drives
 • Up to 32 drives in a unit
 • Up to 32 active units

System Requirements

3ware 9750 model RAID controllers have the following requirements:

Motherboard and Slot Requirements

A workstation-class or server-class motherboard, with an available PCI Express x8 or x16 slot that complies with PCIe Gen 2.0 (recommended for best performance) or PCIe 1.1.

A list of motherboards that have been tested is available at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.
Drive Requirements

The 3ware 9750 RAID controller may be connected to up to 48 SAS and/or SATA dual-ported drives, or 96 SAS and/or SATA single-ported drives, when using one or more enclosures. A maximum of 32 drives are allowed per RAID unit and up to 32 active RAID units per controller.

You cannot mix SAS and SATA drives in the same unit.

Drives and drive enclosures must meet SAS (3.0 Gbps and 6.0 Gbps) and SATA (3.0 Gbps) standards.

A list of drives that have been tested is available at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

Drives may be of any capacity or physical form factor.

The length of internal unshielded interface cables may not exceed 1 meter (39 inches).

Enclosure Management Requirements

For 9750 controllers and release 10.0, enclosure management features in 3ware software are available for supported chassis that provide SCSI Enclosure Services 2 (SES-2) through an internal sideband connection, or via an expander.

When chassis enclosures are cascaded, expanders of the same type are recommended. A limit of 4 cascaded expanders is supported.

A list of supported enclosures is available at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

Operating System

3ware 9750 RAID controllers may be used with the following operating systems for Intel and AMD 32-bit and 64-bit x86 based motherboards:

- Microsoft Windows Server 2003 and 2008
- Microsoft Windows Vista and Windows 7
- Red Hat Enterprise Linux®
- openSUSE Linux
- SUSE® Linux Enterprise Server
- Fedora Core Linux
- Other Linux distributions based on open source Linux 2.6 kernel
For the latest supported operating systems, see the current Release Notes at http://www.lsi.com/channel/ChannelDownloads or the file versions.txt, available on the 3ware CD.

Other Requirements

- Adequate air flow and cooling
- Adequate power supply for drives
- 3DM 2 (3ware Disk Manager) displays information in a browser. It requires one of the following browsers:
 - Internet Explorer 5.5 and later
 - Mozilla Firefox® 1.2 and later
 - Safari®

In addition:

- JavaScript must be enabled
- Cookies must be enabled
- For best viewing, screen resolution should be 1024 x 768 or greater, with 16-bit color or greater.

Understanding RAID Concepts and Levels

3ware RAID controllers use RAID (Redundant Array of Independent Disks) to increase your storage system’s performance and provide fault tolerance (protection against data loss).

This section organizes information about RAID concepts and configuration levels into the following topics:

- “RAID Concepts” on page 5
- “Available RAID Configurations” on page 6
- “Determining What RAID Level to Use” on page 11

RAID Concepts

The following concepts are important to understand when working with a RAID controller:

- **Arrays and Units.** In the storage industry, the term “array” is used to describe two or more disk drives that appear to the operating system as a single unit. When working with a 3ware RAID controller, “unit” is the term used to refer to an array of disks that is configured and managed through the 3ware software. Single-disk units can also be configured in the 3ware software.

- **Mirroring.** Mirrored arrays (RAID 1) write data to paired drives simultaneously. If one drive fails, the data is preserved on the paired drive. Mirroring provides data protection through redundancy. In addition, mirroring using a 3ware RAID controller provides improved performance because 3ware’s TwinStor® technology reads from both drives simultaneously.

- **Striping.** Striping across disks allows data to be written and accessed on more than one drive, at the same time. Striping combines each drive’s capacity into one large volume. Striped disk arrays (RAID 0) achieve highest transfer rates and performance at the expense of fault tolerance.

- **Distributed Parity.** Parity works in combination with striping on RAID 5, RAID 6, and RAID 50. Parity information is written to each of the striped drives, in rotation. Should a failure occur, the data on the failed drive can be reconstructed from the data on the other drives.

- **Hot Swap.** The process of exchanging a drive without having to shut down the system. This is useful when you need to exchange a defective drive in a redundant unit.

- **Array Roaming.** The process of removing a unit from a controller and putting it back later, either on the same controller, or a different one, and having it recognized as a unit. The disks may be attached to different ports than they were originally attached to, without harm to the data.
Available RAID Configurations

RAID is a method of combining several hard drives into one unit. It can offer fault tolerance and higher throughput levels than a single hard drive or group of independent hard drives. LSI's 3ware controllers support RAID 0, 1, 5, 6, 10, 50, and Single Disk. The information below provides a more in-depth explanation of the different RAID levels.

RAID 0

RAID 0 provides improved performance, but no fault tolerance. Since the data is striped across more than one disk, RAID 0 disk arrays achieve high transfer rates because they can read and write data on more than one drive simultaneously. The stripe size is configurable during unit creation. RAID 0 requires a minimum of two drives.

When drives are configured in a striped disk array (see Figure 2), large files are distributed across the multiple disks using RAID 0 techniques.

Striped disk arrays give exceptional performance, particularly for data intensive applications such as video editing, computer-aided design and geographical information systems.

RAID 0 arrays are not fault tolerant. The loss of any drive results in the loss of all the data in that array, and can even cause a system hang, depending on your operating system. RAID 0 arrays are not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.

![Figure 2. RAID 0 Configuration Example](image)

RAID 1

RAID 1 provides fault tolerance and a speed advantage over non-RAID disks. RAID 1 is also known as a mirrored array. Mirroring is done on pairs of drives. Mirrored disk arrays write the same data to two different drives using RAID 1 algorithms (see Figure 3). This gives your system fault tolerance by preserving the data on one drive if the other drive fails. Fault tolerance is a basic requirement for critical systems like web and database servers.

3ware uses a patented technology, TwinStor®, on RAID 1 arrays for improved performance during sequential read operations. With TwinStor technology,
read performance is twice the speed of a single drive during sequential read operation.

The adaptive algorithms in TwinStor technology boost performance by distinguishing between random and sequential read requests. For the sequential requests generated when accessing large files, both drives are used, with the heads simultaneously reading alternating sections of the file. For the smaller random transactions, the data is read from a single optimal drive head.

Figure 3. RAID 1 Configuration Example

RAID 5 provides performance, fault tolerance, high capacity, and storage efficiency. It requires a minimum of three drives and combines striping data with parity (exclusive OR) to restore data in case of a drive failure. Performance and efficiency increase as the number of drives in a unit increases.

Parity information is distributed across all of the drives in a unit rather than being concentrated on a single disk (see Figure 4). This avoids throughput loss due to contention for the parity drive.

RAID 5 is able to tolerate 1 drive failure in the unit.

Figure 4. RAID 5 Configuration Example
RAID 6

RAID 6 provides greater redundancy and fault tolerance than RAID 5. It is similar to RAID 5, but has two blocks of parity information (P+Q) distributed across all the drives of a unit, instead of the single block of RAID 5.

Due to the two parities, a RAID 6 unit can tolerate two hard drives failing simultaneously. This also means that a RAID 6 unit may be in two different states at the same time. For example, one sub-unit can be degraded, while another may be rebuilding, or one sub-unit may be initializing, while another is verifying.

The 3ware implementation of RAID 6 requires a minimum of five drives. Performance and storage efficiency also increase as the number of drives increase.

Figure 5. RAID 6 Configuration Example

RAID 10

RAID 10 is a combination of striped and mirrored arrays for fault tolerance and high performance.

When drives are configured as a striped mirrored array, the disks are configured using both RAID 0 and RAID 1 techniques, thus the name RAID 10 (see Figure 6). A minimum of four drives are required to use this technique. The first two drives are mirrored as a fault tolerant array using RAID 1. The third and fourth drives are mirrored as a second fault tolerant array using RAID 1. The two mirrored arrays are then grouped as a striped RAID 0 array using a two tier structure. Higher data transfer rates are achieved by leveraging TwinStor and striping the arrays.
In addition, RAID 10 arrays offer a higher degree of fault tolerance than RAID 1 and RAID 5, since the array can sustain multiple drive failures without data loss. For example, in a twelve-drive RAID 10 array, up to six drives can fail (half of each mirrored pair) and the array will continue to function. Please note that if both halves of a mirrored pair in the RAID 10 array fail, then all of the data will be lost.

Figure 6. RAID 10 Configuration Example

RAID 50

RAID 50 is a combination of RAID 5 with RAID 0. This array type provides fault tolerance and high performance. RAID 50 requires a minimum of six drives.

Several combinations are available with RAID 50. For example, on a 12-port controller, you can have a grouping of 3, 4, or 6 drives. A grouping of 3 means that the RAID 5 arrays used have 3 disks each; four of these 3-drive RAID 5 arrays are striped together to form the 12-drive RAID 50 array. On a 16-port controller, you can have a grouping of 4 or 8 drives.

No more than four RAID 5 subunits are allowed in a RAID 50 unit. For example, a 24-drive RAID 50 unit may have groups of 12, 8, or 6 drives, but not groups of 4 or 3.

In addition, RAID 50 arrays offer a higher degree of fault tolerance than RAID 1 and RAID 5, since the array can sustain multiple drive failures without data loss. For example, in a twelve-drive RAID 50 array, up to one drive in each RAID 5 set can fail and the array will continue to function. Please note that if two or more drives in a RAID 5 set fail, then all of the data will be lost.
Single Disk

A single drive can be configured as a unit through 3ware software. (3BM, 3DM 2, or CLI). Like disks in other RAID configurations, single disks contain 3ware Disk Control Block (DCB) information and are seen by the OS as available units.

Single drives are not fault tolerant and therefore not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.

JBOD

A JBOD (acronym for “Just a Bunch of Disks”) is an unconfigured disk attached to your 3ware RAID controller. Creation of JBOD configuration is not supported in the 3ware 9750 series. New single disk units must be created as “Single Disk.”

JBOD units are not fault tolerant and therefore not recommended for high availability systems unless additional precautions are taken to prevent system hangs and data loss.

Hot Spare

A hot spare is a single drive, available online, so that a redundant unit can be automatically rebuilt in case of drive failure.
Determining What RAID Level to Use

Your choice of which type of RAID unit (array) to create will depend on your needs. You may wish to maximize speed of access, total amount of storage, or redundant protection of data. Each type of RAID unit offers a different blend of these characteristics.

The following table provides a brief summary of RAID type characteristics.

Table 2: RAID Configuration Types

<table>
<thead>
<tr>
<th>RAID Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>Provides performance, but no fault tolerance.</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Provides fault tolerance and a read speed advantage over non-RAID disks.</td>
</tr>
<tr>
<td>RAID 5</td>
<td>This type of unit provides performance, fault tolerance, and high storage efficiency. RAID 5 units can tolerate one drive failing before losing data.</td>
</tr>
<tr>
<td>RAID 6</td>
<td>Provides very high fault tolerance with the ability to protect against two consecutive drive failures. Performance and efficiency increase with higher numbers of drives.</td>
</tr>
<tr>
<td>RAID 10</td>
<td>A combination of striped and mirrored units for fault tolerance and high performance.</td>
</tr>
<tr>
<td>RAID 50</td>
<td>A combination of RAID 5 and RAID 0. It provides high fault tolerance and performance.</td>
</tr>
<tr>
<td>Single Disk</td>
<td>Not a RAID type, but supported as a configuration. Provides for maximum disk capacity with no redundancy.</td>
</tr>
</tbody>
</table>

You can create one or more units, depending on the number of drives you have installed.

Table 3: Possible Configurations Based on Number of Drives

<table>
<thead>
<tr>
<th># Drives</th>
<th>Possible RAID Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single disk</td>
</tr>
<tr>
<td>2</td>
<td>RAID 0 or RAID 1</td>
</tr>
</tbody>
</table>
| 3 | RAID 0
RAID 1 with hot spare
RAID 5 |
| 4 | RAID 5 with hot spare
RAID 10
Combination of RAID 0, RAID 1, single disk |
Using Drive Capacity Efficiently

To make the most efficient use of drive capacity, it is advisable to use drives of the same capacity in a unit. This is because the capacity of each drive is limited to the capacity of the smallest drive in the unit.

The total unit capacity is defined as follows:

Table 4: Drive Capacity

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Disk</td>
<td>Capacity of the drive</td>
</tr>
<tr>
<td>RAID 0</td>
<td>(number of drives) X (capacity of the smallest drive)</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Capacity of the smallest drive</td>
</tr>
<tr>
<td>RAID 5</td>
<td>(number of drives - 1) X (capacity of the smallest drive)</td>
</tr>
<tr>
<td></td>
<td>Storage efficiency increases with the number of disks:</td>
</tr>
<tr>
<td></td>
<td>storage efficiency = (number of drives -1)/(number of drives)</td>
</tr>
<tr>
<td>RAID 6</td>
<td>(number of drives - 2) x (capacity of the smallest drive)</td>
</tr>
<tr>
<td>RAID 10</td>
<td>(number of drives / 2) X (capacity of smallest drive)</td>
</tr>
<tr>
<td>RAID 50</td>
<td>(number of drives - number of groups of drives) X (capacity of the smallest drive)</td>
</tr>
</tbody>
</table>

Through drive coercion, the capacity used for each drive is rounded down so that drives from differing manufacturers are more likely to be able to be used as spares for each other. The capacity used for each drive is rounded down to the nearest GB for drives under 45 GB (45,000,000,000 bytes), and rounded down to the nearest 5 GB for drives over 45 GB. For example, a 44.3 GB drive will be rounded down to 44 GB, and a 123 GB drive will be rounded down to 120 GB.
Support for Over 2 Terabytes

Legacy operating systems such as Windows 2000, Windows XP (32-bit), Windows 2003 (32-bit and 64-bit without SP1), and Linux 2.4, do not recognize unit capacity in excess of 2 TB.

If the combined capacity of the drives to be connected to a unit exceeds 2 Terabytes (TB), you can enable auto-carving when you configure your units.

Auto-carving divides the available unit capacity into multiple chunks of 2 TB or smaller that can be addressed by the operating systems as separate volumes. The carve size is adjustable from 1024 GB to 2048 GB (default) prior to unit creation.

If a unit over 2 TB was created prior to enabling the auto-carve option, its capacity visible to the operating system will still be 2 TB; no additional capacity will be registered. To change this, the unit has to be recreated.

You may also want to refer to Knowledge Base article # 13431, at https://selfservicelsi.com/service/main.jsp. (Use Advanced search and enter the KB # as a keyword.)
3ware Tools for Configuration and Management

3ware software tools let you easily configure the drives attached to your 3ware RAID controller, specifying which drives should be used together as a RAID unit and the type of RAID configuration you want, and designating hot spares for use if a drive degrades.

3ware provides the following tools for use in configuring and managing units attached to the 3ware controller:

• **3BM (3ware BIOS Manager)**
 3BM is a BIOS level tool for creating, deleting, and maintaining disk arrays, rebuilding arrays, designating hot spares, and setting controller policies. 3BM is the tool most frequently used to configure units immediately after installation of the controller, but can also be used after installation to maintain the controller and associated drives.

 For general information about working with 3BM, see Chapter 5, “3ware BIOS Manager (3BM) Introduction.”

• **3DM 2 (3ware Disk Manager)**
 3DM is a daemon (under Linux) and a service (under Windows) which runs in the background on the controller’s host system, and can be accessed through a web browser to provide ongoing monitoring and administration of the controller and associated drives. It can be used locally (on the system that contains the 9750) or remotely (on a system connected via a network to the system containing the 9750).

 For details about working with 3DM, see “3DM 2 (3ware Disk Manager) Introduction” on page 61.

 3DM 2 is the current version of the 3ware Disk Manager. Throughout this documentation, it is referred to interchangeably as 3DM and 3DM 2.

• **3ware Alert Utility (WinAVAlarm)**
 The 3ware Alert Utility for Windows runs on the system in which the 3ware RAID controller is installed and provides direct notification by a popup message and audio alarm when events occur. This utility can be configured to specify the type of events that should generate these notifications. For details, see “Using the Alert Utility Under Windows” on page 148.
• **3ware CLI (Command Line Interface)**

The 3ware CLI provides the functionality available in 3DM 2 through a Command Line Interface. You can view unit status and version information and perform maintenance functions such as adding or removing drives, and reconfiguring RAID units online. You can also use it to remotely administer controllers in a system.

The 3ware CLI is described in *3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0* and in the *3ware HTML Bookshelf*.

Monitoring, Maintenance, and Troubleshooting Features

Several 3ware RAID controller features aid in monitoring and troubleshooting your drives.

• **Drive Performance Monitoring** (DPM). DPM is an advanced troubleshooting tool used to measure drive performance, and to help identify when a specific drive is causing problems so that you can repair or replace it. Commands are available through the 3ware CLI to enable and disable DPM, and to see a range of different statistics. These statistics can be useful to help troubleshoot problems with your RAID controller and units. For more information, see “Drive Performance Monitoring” on page 241.

• **SMART Monitoring** (Self-Monitoring, Analysis and Reporting Technology) automatically checks the health of SATA and SAS disk drives every 24 hours and reports potential problems. This allows you to take proactive steps to prevent impending disk crashes. SMART data is checked on all disk drives (array members, single disks, and hot spares). Monitoring of SMART thresholds can be turned on and off in 3DM 2. For more information, see “Selecting Self-tests to be Performed” on page 174 and “Viewing SMART Data About a Drive” on page 150.

• **Staggered Spinup** allows drives that support this feature to be powered-up into the standby power management state to minimize in-rush current at power-up and to allow the controller to sequence the spin-up of drives. Both SATA-2 OOB and ATA spin-up methods are supported. The standby power management state is persistent after power-down and power-up. You can set the number of drives that will spin up at the same time, and the time between staggers in 3BM (the 3ware BIOS Management utility). This feature does not apply to drives that are attached to an expander. For details, see “Enabling and Setting Up Staggered Spin-up” on page 86.
• **Verification and Media Scans.** The verify task verifies all redundant units, and checks for media errors on single disks, spares and RAID 0 unit members. If the disk drive is part of a redundant unit, error locations that are found and are deemed repairable are rewritten with the redundant data. This forces the drive firmware to reallocate the error sectors accordingly. (For more information, see “About Verification” on page 155.)

• **Error Correction.** Bad sectors can be dynamically repaired through error correction (Dynamic Sector Repair). Reallocation of blocks is based intelligently on the location of the block in relation to the stripe.

• **Scheduled Background Tasks.** Initialize, rebuild, verify, and self-test tasks can all be run in the background, at scheduled times. This lets you choose a time for these tasks to be run when it will be least disruptive to your system. You can also define the rate at which background tasks are performed, specifying whether I/O tasks should be given more processing time, or background rebuild and verify tasks should be given more processing time. (For more information, see “Scheduling Background Tasks” on page 169.)

• **Write Cache.** Write cache can be enabled or disabled using 3BM, 3DM 2 and CLI. When write cache is enabled, data will be stored in 3ware controller cache and drive cache before the data is committed to disk. This allows the system to process multiple write commands at the same time, thus improving performance. However when data is stored in cache, it could be lost if a power failure occurs. With a Battery Backup Unit (BBU) installed, the data stored on the 3ware controller can be restored. (For more information, see “Enabling and Disabling the Unit Write Cache” on page 109.)

• **Read Cache.** Two read cache settings are available. Basic Read Cache stores data from media locally on the controller to improve read access times for applications. The 3ware Read Cache feature also includes an Intelligent Mode, which enables Intelligent Read Prefetch (IRP). IRP includes a typical read-ahead caching method which is used to proactively retrieve data from media and store it locally on the controller with the anticipation that it may be requested by the host. By default read cache is set to the Intelligent mode. For more information, see “Working with Read Cache Settings” on page 111.

• **StorSave™ Profiles** allow you to set the level of protection versus performance that is desired for a unit when write cache is enabled. (For more information, see “Setting the StorSave Profile for a Unit” on page 118.)

• **Enclosure Services.** Drives, fans, temperature sensors, and power supplies in supported chassis and enclosures can be identified by flashing LEDs so that you can quickly identify which component needs to be
checked or replaced. For more information, see “Enclosure Management” on page 190.

- **Auto Rebuild.** For times when you do not have a spare available, setting the Auto Rebuild policy allows rebuilds to occur with an available drive or with a failed drive. (For more information, see “Setting the Auto Rebuild Policy” on page 82.)
First-Time RAID Configuration Using 3BM

If you will install the operating system on and boot from a unit managed through the new 3ware RAID controller, follow the steps in this chapter to use the 3ware BIOS Manager (3BM) to configure the unit and install the driver.

If the operating system is already installed on another drive in your system, you can use the steps below or you can configure units through 3DM or the CLI.

You can create one or more units on a single controller, depending on the number of drives that the specific 3ware RAID controller supports and the number of drives attached. (For more information, see “Determining What RAID Level to Use” on page 11.)

Basic Steps for Creating a Unit

The process of configuring your RAID units includes these main steps, which are detailed in the step-by-step example:

• Launch 3BM (3ware BIOS Manager)
• Select the drives to be included and indicate that you want to create a unit
• Select the desired RAID configuration
• Set other parameters, depending on the type of RAID configuration
• Confirm the unit configuration
• Save your changes and finish up

Note: If the capacity of the unit you create will exceed 2TB and you are using Windows 2003 (32-bit and 64-bit without SP1) or Linux 2.4, you will need to enable auto-carving. Before creating your unit, follow the instructions under "Using Auto-Carving for Multi LUN Support" on page 83.
To launch 3BM

1. Power up or reboot your system.
 While the system is starting, watch for a screen similar to Figure 8.

Figure 8. 3ware BIOS Screen

---Press <Alt-3> to access 3ware BIOS Manager---
3ware ATA RAID Controller: 9750-4I
BIOS: BE9X X.XX.XX.XXX Firmware: FE9X X.XX.XX.XXX
BBU Status: Not Present
Number of online units: 1, available drives: 0, hot spare: 0, offline units:0

Available drives:
- SATA - SAMSUNG HD160JJ 149.04 GB Phy 0

Exportable Units:
- 3drive 64K RAID5 298.00 GB (Zygote3) DEGRADED
- SATA - SAMSUNG HD160JJ 149.04 GB (Phy 3)
- SATA - SAMSUNG HD160JJ 149.04 GB (Phy 1)

2. Press Alt-3 immediately to bring up the 3ware BIOS Manager (3BM).
 Normally your 3ware configuration remains on-screen for just a few seconds. However, if a unit has degraded, the screen indicates the problem and remains on your screen longer.

3. If you plan to make changes to your configuration and need to backup data before continuing, press ESC and do so now. Otherwise, press any key to continue.

Figure 9. Warning Message When you Start 3BM

![Warning Message](image)

4. If you have more than one 9750 controller in your system, a screen lists the available boards. (See Figure 10.) In this case, highlight the board with which you want to work and press Enter.

If you have more than 4 boards, you will only see four at first (only four can be processed at a time). After you exit from 3BM, you will have an opportunity to access the BIOS again, to access the next boards.
You will see a screen similar to Figure 9, warning you that changing your disk array configuration may overwrite data on the disks.

To select the drives and create a unit

1. Select the drives to be included by highlighting each one and pressing **Enter** to select it, or select all at once by selecting the heading above them.

 When you select a drive, an asterisk appears next to it in the left-most column (see Figure 11).

 You may include from one to thirty-two drives in the unit, depending on the number available.

Figure 11. Asterisks Next to Selected Drives

2. After all drives for the unit are selected, use the **Tab** to move to the **Create Unit** button and press **Enter**.

 The **Create Disk Array** screen appears (see Figure 12).
3 Make sure that the proper drives are listed.

Figure 12. Create Disk Array screen

![Create Disk Array screen]

To name the unit and select the desired RAID configuration

1 (Optional) Press **Enter** in the **Array Name** field and type a name for the unit. Then press **Enter** again to accept the name.

2 Use the **arrow keys** or press **Tab** to move to the **RAID Configuration** field and press **Enter** to display the available RAID levels for the number of drives you selected.

![List of Configuration Choices for Four Drives]

Figure 13. List of Configuration Choices for Four Drives

3 Use the **arrow keys** to highlight the desired RAID configuration and press **Enter**.

For information about the different RAID levels and when to use each, see “Understanding RAID Concepts and Levels” on page 5.

4 Use the **arrow keys** or press **Tab** to move to the field **Stripe Size** and select the desired stripe size (16KB, 64KB, or 256KB).

Notes:
Striping size is not applicable for RAID 1, because it is a mirrored unit without striping.

For RAID 6, only stripe sizes of 64 KB and 256 KB are supported.
To set other policies for the unit
While creating a unit through 3BM, you can set a number of unit policies. Each of these policies is already set to a default value, so you do not have to change them.

Many of these options are listed on the Create Disk Array screen. A few are available through the Advanced Options screen.

1. Use the arrow keys to move through the policies shown on the screen, select the option you want and press Enter to choose it.

2. Press Tab to the Advanced button and press Enter to open the Advanced options screen, where additional policies are available.

For details about the various unit policies, see:
- “Enabling and Disabling the Unit Write Cache” on page 109
- “Working with Read Cache Settings” on page 111
- “Setting the StorSave Profile for a Unit” on page 118
- “Enabling or Disabling Auto Verify for a Unit” on page 115
- “Rapid RAID Recovery” on page 121
- “Enabling and Disabling Queuing for a Unit” on page 117
- “Setting Overwrite ECC (Continue on Source Error When Rebuilding)” on page 116
- “Initialization Method” on page 93

Figure 14. Create Disk Array Advanced Options screen

To create a boot volume of a particular size
You can specify a portion of the unit you create to be used as a boot volume, if desired. This is useful if you will be installing your operating system onto the unit and want to have a designated volume for the OS. The remainder of the unit will be created as a separate volume (or volumes if auto carving is also used.).
Basic Steps for Creating a Unit

1. Open the Advanced Options screen. (From the Create Disk Array screen, press Tab to the Advanced button and press Enter.)

2. In the Boot Volume Size field, press Enter to display a text box.

3. Enter the size in Gigabytes that should be assigned to the boot volume.

4. Press Enter again to accept the size.

To confirm unit configuration

1. If you’re on the Advanced Options screen, press Tab to select the OK button and press Enter to return to the Create Disk Array screen.

2. Press Tab to select the OK button and press Enter to confirm creation of the unit.

 Or, if you want to cancel the creation of the unit, tab to Cancel and press Enter.

3. If you leave the Unit Write Cache field enabled and do not have a BBU installed, 3BM will ask you to confirm that you want to enable write cache.

 The unit is not actually created and no data is overwritten until you have finished making all your changes and press F8.

4. If the volume summary screen appears, review the information and press any key to continue.

 Multiple volumes will be created if you entered a Boot Volume Size of greater than zero (0), or if auto-carving is enabled and the combined size of the drives in your unit is large enough to divide it into multiple volumes. For more information about auto-carving, see “Using Auto-Carving for Multi LUN Support” on page 83.

Note: Setting a Boot Volume Size is optional. In addition, if you specify a boot volume, you do not have to install your operating system onto it. For more information about creating a boot volume, see “Boot volume size” on page 93. If the size of your array is 2TB or greater, you may also want to review the information about carving the unit into multiple volumes. For details, see “Using Auto-Carving for Multi LUN Support” on page 83.
To finish up and save your changes

1. If you have additional drives, you can go ahead and configure an additional RAID unit or designate a hot spare. Then continue on with these steps. (For details about hot spares, see page 26.)

2. If you configured more than one unit, and you plan to install the operating system on one of them, make that unit be the first unit (Unit 0) in the list of Exportable Units.

 To move a unit up in the list, highlight it and press the Page Up key.

 You will also want to make sure that the controller is the boot device for your computer. After finalizing the configuration below, be sure to follow the steps under “Checking the Motherboard Boot Sequence” on page 27.

3. When you are finished configuring units, press F8 to save the changes and exit 3BM.

 A warning message asks you to confirm that all existing data on the drives will be deleted.

Figure 16. Confirmation Message when Saving and Exiting
4 Type Y to continue, delete any existing data on the drives, and create the
unit.

If you chose foreground initialization, then, depending on the RAID
configuration you are creating, initialization of the unit may begin
immediately and delay your ability to use your unit for several hours.
(RAID 6 units and some RAID 5 and RAID 50 units begin immediate
initialization.).

5 If you want to immediately use a RAID configuration which has started
foreground initializing, you can press Esc to cancel the progress box.
(Before doing this, be sure to read “Trade-offs to cancelling
initialization,” below.)

You can then exit 3BM and boot to the operating system before the
process of writing zeroes to the drives is complete. Once you have booted
to the operating system, background initialization of the unit will begin
after a delay of up to ten minutes.

<table>
<thead>
<tr>
<th>Trade-offs to cancelling initialization:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
</tr>
<tr>
<td>• Unit can be used immediately and is fully fault tolerant</td>
</tr>
<tr>
<td>Cons:</td>
</tr>
<tr>
<td>• Performance of these units will be lower until initialization is complete.</td>
</tr>
<tr>
<td>• It will take longer to complete initialization, since background initialization takes longer than foreground initialization.</td>
</tr>
</tbody>
</table>

For complete information about initialization of RAID units, see “About Initialization” on page 152.

6 If you are finished creating RAID units, be sure to check the boot
sequence for your system, as described under “Checking the Motherboard
Boot Sequence” on page 27.
Specifying a Hot Spare

You can designate one of the Available Drives as a hot spare in 3BM. If a hot spare is specified and a redundant unit degrades, an event notification will be generated. If the hot spare is of the same type (SAS or SATA) and of adequate size, it will automatically replace the failed drive without user intervention.

To specify a hot spare

1. In the list of Available Drives, highlight the drive to use.
2. Type s to specify that the selected drive will be the hot spare.
 You'll see the words “Hot Spare” appear next to the drive in the Available Drives list.

Figure 17. Hot Spare Indicated

If a hot spare is already enabled, you can disable it by following the same process.

Note: In order to replace a failed drive in a degraded unit, a hot spare drive must have the same or larger storage capacity than the failed drive.
Making Drives Visible to the Operating System

By default, if you leave individual drives unconfigured, they will not be available to the operating system. If you want to be able to use individual drives, configure them as single-disk units.

Checking the Motherboard Boot Sequence

Using your computer’s BIOS setup utility, ensure that it shows the appropriate boot devices.

After installing the 3ware controller in your system, go into the BIOS for your computer system to check and change the boot order. The new controller is usually added as a boot device after previously existing boot devices. You can move it up in the list, if appropriate. Refer to the documentation for your system for information about starting the system BIOS.

- If the OS is already installed on a unit connected to the system, be sure that device precedes the 3ware RAID controller in the boot sequence. If you have other disks installed on the motherboard, the 3ware RAID controller should precede them in boot order.

- If you will install your OS on a disk or unit attached to the 3ware RAID controller, specify the controller as the boot device. In 3BM, the unit listed at the top on the 3BM main page will be the boot unit. You can change the order by highlighting a unit and pressing the PgUp or PgDn key. (Note that if you configured more than one unit, the drive(s) specified as Unit 0 will be treated as the boot disk.)

What Next?

The final steps in setting up your RAID units are to load the 3ware driver and make the units available to your operating system. For details, turn to Chapter 4, “Driver Installation.”

After installing the driver, in order to maintain your RAID units, you may also want to install 3ware’s browser-based Disk Management tool, 3DM 2, or the 3ware Command Line Interface (CLI). For more information, see Appendix B, “Software Installation” on page 310.
Getting Started with Your 3ware RAID Controller

Setting up your 3ware RAID controller involves these main steps:

- Physically Install the RAID Controller and Drives
- Configure a RAID Unit
- Install the Driver and Make the Operating System Aware of the New Drives
- Set Up Management and Maintenance Features

Once the controller and drives have been physically installed, the order in which you perform these steps depends in part on whether one of the units you configure will act as your boot drive.

Tip: When you are first setting up your system, you may want to review “System Requirements” on page 2.

Physically Install the RAID Controller and Drives

To install your controller, follow the instructions in the installation guide that came with your 3ware controller. If you do not have a hardcopy of the installation manual, it is available in the “doc” folder on your 3ware CD, or you can download it from the LSI website at http://www.lsi.com/channel/ChannelDownloads.

For drive installation, see the instructions that came with your enclosure. If you are installing drives in a computer case, follow the manufacturer’s instructions.

Configure a RAID Unit

If you would like more information about what RAID level to choose for your situation, review the information under “Understanding RAID Concepts and Levels” on page 5. Then turn to “Configuring a New Unit” on page 91.

If you want to install the operating system on and boot from a drive managed through the new 3ware RAID controller, use the 3ware BIOS Manager (3BM) to define the configuration. You will find step-by-step instructions for initial
installation in. Chapter 2, “First-Time RAID Configuration Using 3BM.” Additional information about configuration is also included in the later chapters of this user guide.

If the operating system is already installed on another drive in your system, you can configure units through 3BM, through 3ware Disk Manager (3DM 2), or through the Command Line Interface (CLI). If you want to use 3DM 2 or the CLI for configuration, go ahead and boot to the operating system, install the driver and the 3DM 2 software, and then configure your units. You may want to refer to the following information:

- Chapter 6, “3DM 2 (3ware Disk Manager) Introduction”
- Chapter 8, “Configuring Units”

Install the Driver and Make the Operating System Aware of the New Drives

Instructions for installing drivers are available in “Driver Installation” on page 32.

You will also find instructions for updating the driver under “Downloading the Driver and Firmware” on page 178.

Set Up Management and Maintenance Features

3ware RAID controllers include a number of features to help you manage and maintain the controller and your configured units. The default settings for these features allow you to begin using your newly configured units right away. You can review and change these features as a final step in your initial setup, or you can make changes to them later, at your convenience. These features include:

- Controller and unit policies, such as Auto Rebuild, Auto Verify, use of write cache, use of queuing mode, and selection of a StorSave profile.
- Email notification of alarms and other events
- Schedules for when background tasks will be performed, to minimize the impact on day-to-day performance during peak usage times. (Background tasks include rebuild, verify, initialize, migrate, and self-test.)

Details about these features are described in this documentation. When you first set up your controller, you may want to review these sections in particular:

- “Configuring Your Controller” on page 77
- “Setting Unit Policies” on page 107
- “Setting Background Task Rate” on page 168
Initial Settings for Policies and Background Tasks

The table below lists the default settings for policies and background tasks. These settings are used if you do not explicitly change the policy settings.

Table 5: Default Settings for Policies and Background Tasks

<table>
<thead>
<tr>
<th>Policy</th>
<th>Default Value</th>
<th>Where to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller-Level Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-Rebuild</td>
<td>Enabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Auto-Carving</td>
<td>Enabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Auto-Detect</td>
<td>Enabled</td>
<td>CLI</td>
</tr>
<tr>
<td>Auto-Verify Preferred Start Day and Time (Basic)</td>
<td>Friday, 12 am</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Auto-Verify Verify Schedule (Advanced)</td>
<td>Seven days of the week, starting at 12 am and running 24 hours.</td>
<td>3DM, CLI</td>
</tr>
<tr>
<td>Carve Size or Factor</td>
<td>2048 GB</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Drives Per Spinup</td>
<td>1</td>
<td>3BM, CLI</td>
</tr>
<tr>
<td>Delay Between Spinup</td>
<td>6 seconds</td>
<td>3BM, CLI</td>
</tr>
<tr>
<td>Export Unconfigured (JBOD) Disks</td>
<td>No</td>
<td>3BM, CLI</td>
</tr>
<tr>
<td>Staggered Method</td>
<td>ATA-6</td>
<td>3BM</td>
</tr>
<tr>
<td>Staggered Spinup</td>
<td>Enabled</td>
<td>3BM</td>
</tr>
<tr>
<td>Unit-Level Settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto Verify</td>
<td>Enabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>ECC Overwrite (Continue on Error When Rebuilding)</td>
<td>Disabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Boot Volume Size</td>
<td>Unspecified</td>
<td>3BM, CLI</td>
</tr>
<tr>
<td>Initialization Method</td>
<td>Foreground</td>
<td>3BM</td>
</tr>
<tr>
<td>Queuing (NCQ)</td>
<td>Enabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Rapid RAID Recovery</td>
<td>All (Fast Rebuild/Shutdown)</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>StorSave Profile</td>
<td>Balanced</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Write Cache</td>
<td>Enabled</td>
<td>3BM, 3DM, CLI</td>
</tr>
<tr>
<td>Read Cache</td>
<td>Intelligent</td>
<td>3BM, 3DM, CLI</td>
</tr>
</tbody>
</table>
Table 5: Default Settings for Policies and Background Tasks

<table>
<thead>
<tr>
<th>Policy</th>
<th>Default Value</th>
<th>Where to Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Task Settings</td>
<td>(For details, see “Scheduling Background Tasks” on page 169 and “Setting Background Task Rate” on page 168)</td>
<td></td>
</tr>
<tr>
<td>Verify Task Schedules</td>
<td>Basic - Friday 12:00 am</td>
<td>3DM 2, 3BM, CLI</td>
</tr>
<tr>
<td></td>
<td>Advanced - Daily, starting at 12:00 am and running for 24 hours</td>
<td>3DM 2, CLI</td>
</tr>
<tr>
<td>Follow Verify Task Schedule</td>
<td>Enabled - Basic schedule</td>
<td>3DM 2, 3BM, CLI</td>
</tr>
<tr>
<td>Rebuild/Migrate Task Schedules</td>
<td>Daily, starting at 12:00 am and running for 24 hours</td>
<td>3DM 2, CLI</td>
</tr>
<tr>
<td>Follow Rebuild/Migrate Task Schedule</td>
<td>Ignore</td>
<td>3DM 2, CLI</td>
</tr>
<tr>
<td>Self-test Task Schedules</td>
<td>Daily, starting at 12:00 am and running for 24 hours</td>
<td>3DM 2, CLI</td>
</tr>
<tr>
<td>Follow Self-test Task Schedule</td>
<td>Yes</td>
<td>3DM 2, CLI</td>
</tr>
</tbody>
</table>

a. Although the default Self-test Task Schedule is for 24 hours, self-test tasks are run only at the beginning of that time period and take just a few minutes. For more information about task schedules, see “Scheduling Background Tasks” on page 169.
Driver Installation

This chapter provides details about how to install the driver for your 3ware RAID controller and make the units available to your operating system.

• If the unit you have created will be your system's boot device, you install the driver for the controller as you install the operating system.

• If the operating system is already installed on a unit connected to another controller or to the motherboard, you start the operating system and then install the driver.

Details for both situations are described in this chapter. Driver information is organized by operating system:

• “Driver Installation Under Windows” on page 33
• “Driver Installation Under Linux” on page 39

Note: If you are working with a system that already has a 3ware RAID controller installed, and want to update the driver or firmware for your 3ware RAID controller to a newer version, see “Updating the Firmware and Driver” on page 177.
Driver Installation Under Windows

Note: Before installing the 3ware driver, you may want to physically install your 3ware RAID controller in the system.

Consult the installation guide that came with your controller for how to do this. If you do not have a hardcopy of the installation manual, it is available in the “doc” folder on your 3ware CD, or you can download it from the LSI website at http://wwwlsi.com/channel/ChannelDownloads.

The 3ware RAID controller can be used with Windows Server 2003 (SP2 or higher), Windows 2008, Windows 2008 R2, Vista, and Windows 7, with both the 32-bit and 64-bit versions. It is recommended that you upgrade to the latest service pack available.

A drive or unit managed by the 3ware RAID controller may be configured to be your system’s boot device. Or, you can use units managed by the 3ware controller for secondary storage and boot from another device, such as a disk attached to the motherboard, or other bootable media.

This section contains instructions for how to:

- Create a driver disk for the 3ware RAID controller.
- Install the 3ware driver and Windows on a new drive or unit.
- Install the 3ware driver when Windows is already installed on a different device.

Note: You must have administrator privileges for your system to install the Windows operating system and the 3ware driver.

Materials Required

- LSI 3ware CD
- Microsoft Windows installation media (Not required if Windows is already installed on another drive.).
- Floppy diskette or USB drive, to create a driver disk, if required
Creating a 3ware Driver Disk

If you are installing Windows on a new unit or drive managed by the 3ware RAID controller, you can create a driver disk, or install the driver from the 3ware CD.

To create a driver floppy diskette

1. Insert the 3ware CD into your Windows system.
 Autorun should start the 3ware menu program. If it does not, open **My Computer** from within the Windows Explorer, select the CD, right-click and choose **AutoPlay**.
2. When the License screen appears, review and agree to the license in order to continue.
3. When the 3ware Menu appears, click **Driver Disk Images**.
4. In the 3ware Driver Disk Images menu, click the appropriate button to create the driver diskette that you need.
 Note that there are both 32-bit and 64-bit drivers available for Windows. Be sure to select the correct one.
5. When the confirm message appears, insert a blank diskette into a floppy drive and click the **Yes** button to begin the process.

To copy the driver to a USB drive

1. Insert the 3ware CD into your Windows system.
2. On the CD, navigate to packages/images and locate the appropriate driver.
3. Insert a USB drive into your computer.
4. Unzip the driver file to the USB drive.

Installing the 3ware Driver and Windows on a New RAID Unit

If you want to install Windows on a new drive configuration managed by the 3ware RAID controller, follow the instructions in this section.

If Windows is already installed on another drive, turn to “Installing the 3ware Driver on a Windows System that Boots from a Different Device” on page 36.
To install Windows 2003 and the 3ware driver

1. Boot from the Windows Server 2003 installation CD and press **F6** when you see the message: “Press F6 if you need to install a 3rd party SCSI or RAID driver” at the bottom of the display.

2. When you see the message: “Setup could not determine the type of one or more mass storage devices or you have chosen to manually specify an adapter…”

 Type **S** to specify that you have an additional 3ware RAID controller.

3. Insert the 3ware driver disk and press **Enter**.

4. When a box with **LSI 3ware 9750 RAID Controller** appears, press **Enter** to select it.

5. Type **S** if you have additional devices to add. Otherwise, press **Enter**.

6. If the “Digital Signature Not Found” message appears, click **Yes** to continue the installation.

 (If there are multiple controllers in the system, you will see this message once for each controller.)

7. Continue with the normal Windows installation at this point. There are no instructions after installing the driver that are specific to 3ware. If you need additional instructions, refer to the Windows documentation supplied by Microsoft.

8. Follow the instructions under “Making Units Managed by a 3ware Controller Available to Windows” on page 38.

To install Windows Server 2008, Vista, or Windows 7 and the 3ware driver

1. Boot from the Windows Server 2008, Vista, or Windows 7 installation CD and specify the following: Language to Install, Time and currency format, and Keyboard or input method. Click **Next** and then click **Install Now**.

2. Accept the Microsoft License Terms and click **Next**.

3. When the message “Which type of installation do you want:?” appears, click **Custom (advanced)**.

4. When the message “Where do you want to install Windows?” appears, click **Load Driver**.

5. Insert the media with the 3ware driver. It can be a floppy, USB flash drive, CD, or DVD. Once inserted, select **Browse** or **OK** and navigate to the location of the driver.
6 When the message “Select the driver to be installed” appears, choose **LSI 3ware 9750 RAID Controller** and click **Next**.

7 Continue with the normal Windows installation at this point. There are no instructions after installing the driver that are specific to 3ware. If you need additional instructions, refer to the Windows documentation supplied by Microsoft.

8 Follow the instructions under “Making Units Managed by a 3ware Controller Available to Windows” on page 38.

Installing the 3ware Driver on a Windows System that Boots from a Different Device

If you are installing the 3ware RAID controller on a system that already has a Windows operating system boot device, follow the instructions in this section. If you will be using a unit managed by the 3ware RAID controller as your boot device, see “Installing the 3ware Driver and Windows on a New RAID Unit” on page 34.

Note: It is easiest and simplest to install the driver before you install the 3ware RAID controller card. If you install the controller card first, when Windows displays the Found New Hardware wizard, cancel the prompts. Then continue with the procedure below.

To install the 3ware driver with the Device Driver Install Wizard

1 Insert the 3ware CD into your CD-ROM drive. Click **Agree** at the LSI license agreement.

 The 3ware menu appears.

2 Click **Install Windows Drivers**.

 The installer will select the correct driver for your Windows operating system and open the Device Driver Installation Wizard.
3 Click **Next**.

You will see the following screen. The green checkmarks indicate successful installation of the driver. If unsuccessful, there will be a red checkmark.

Figure 19. Final Installation Screen

4 Click **Finish** to exit the installer.
5 If your 3ware RAID controller card is not yet installed, power down the system and physically install the controller card.

When you turn your computer on again, Windows will automatically detect that the controller has been installed.

6 When prompted, click the default Next to have Windows automatically select the driver.

The driver will automatically be detected, and the controller will be ready to use. Windows may or may not require that you reboot your computer.

Making Units Managed by a 3ware Controller Available to Windows

After the 3ware driver has been installed, you need to partition and format the new units or disks.

1 Remove the driver diskette or CD, reboot the system, and log in as the system administrator.

2 Use Disk Administrator to partition and format the new units or disks:

 From the Start menu, choose Programs>Administrative Tools > Computer Management.

 In the Computer Management window, under Storage, select Disk Management.

 Figure 20. Computer Management Screen

3 Follow the steps that appear on the screen to write a signature to the drive.

4 Right-click on the drive and select Create Volume.

5 Follow the steps the appear on-screen to create a volume and to assign a drive letter.
A drive or unit managed by the 3ware RAID controller may be configured to be your system's boot device. Or, you can use units managed by the 3ware controller for secondary storage and boot from another device, such as a disk attached to the motherboard, or other bootable media.

The steps you follow to install the driver and make your RAID unit available depend on which version of Linux you are using, and whether it will be your boot device. This chapter provides step-by-step instructions for the following:

- Red Hat / Fedora Core Linux Installation
 - “Installing the 3ware Kernel Driver Module while Installing Red Hat Linux on a New Unit” on page 42
 - “Installing the 3ware Kernel Driver Module on a Red Hat or Fedora Core Linux System that Boots From a Different Device” on page 43

- SUSE Linux Installation
 - “Installing the 3ware Kernel Driver Module while Installing SUSE Linux on a New Unit” on page 47
 - “Installing the 3ware Kernel Driver Module on a SUSE Linux System that Boots from a Different Device” on page 48

The LSI website provides drivers for the latest Linux releases at http://www.lsi.com/channel/ChannelDownloads. Refer to the release notes for more details.

If you are using an unsupported Linux distribution or kernel for which there is not a driver available from the LSI download page, search the LSI Knowledge Base for keyword 14546 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp. You can also contact LSI Technical Support, or email your driver request to support@lsi.com.

For information about how to compile a driver from the 3ware driver source, see the links appended to the Knowledge Base article mentioned above.
Obtaining 3ware Linux Drivers

Obtain the 3ware driver for Linux from one of these two sources:

- **3ware CD.** Compiled and tested drivers for Red Hat, openSUSE, SUSE Linux Enterprise Server (SLES), and Fedora Core Linux are included on this CD. Also included are the 3ware driver sources to compile kernel-specific drivers for many other Linux distributions.

- **LSI web site.** You can download the latest compiled and tested driver for supported Linux distributions from the LSI web site at http://wwwlsi.com/channel/ChannelDownloads. Also included are the 3ware driver sources to compile kernel-specific drivers for many other Linux distributions.

Warning: Be sure to use the correct driver for your processor. It is possible to load the wrong driver onto a system, however when you boot such systems, they will not work.

LSI offers the following drivers for various Linux distributions:

- 32-bit for Intel x86 and AMD Athlon
- 64-bit for AMD Opteron and Intel Xeon (EM64T)

Determining the Current Version of your 3ware Driver

If you already have a 3ware controller installed, you can check the current driver version, using either 3DM 2 or the CLI. (For details, see “Viewing Information About a Controller” on page 77.)

You can also check it using the following method:

If you have a 2.6 kernel with sysfs, type the following command:

```
cat /sys/class/scsi_host/<hostid>/3ware_stats
```

where <hostid> is usually host 0, unless other SCSI devices are available, in which case it may be host1 or higher.

If you have a 2.6 kernel without sysfs, type the following command:

```
dmesg | grep 3w
```
Driver Installation Under Red Hat or Fedora Core Linux

Materials required

• LSI 3ware CD
• Floppy diskette or USB drive, if you need to create a driver install disk.
• Fedora or Red Hat installation disk (Not required if Linux is already installed on another drive.)

Creating a Red Hat Linux Driver Disk

If you are installing Linux on the new drive or unit managed by the 3ware RAID controller, you must create a 3ware driver install disk on a diskette or a USB drive. If Linux is already installed on another device, you may install the 3ware kernel driver module from the 3ware CD.

To create a Red Hat Linux driver install floppy diskette

1 Insert the 3ware CD into your Linux system. A GUI such as X windows is required to load the 3ware menu.

 To manually mount the CD, type:

 mount -t iso9660 /dev/cdrom /mnt

 To start autorun, type:

 /mnt/autorun

 When it starts, you will be asked to agree to the LSI software license. To continue, click Agree.

2 When the 3ware Menu appears, click the Driver Disk Images button.

3 In the 3ware Driver Disk Images menu, click the button for the driver disk you want to create.

 A confirmation window opens.

4 Insert a blank diskette into a drive and click the Yes button to begin creating the driver floppy diskette.

Note: If you need to create a Linux driver diskette for a Linux distribution other that what is available on the menu, search the LSI Knowledge Base for keyword 14546 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp
To copy the driver to a USB drive

1. Insert the 3ware CD into your system.
 To manually mount the CD, type:
   ```
   mount -t iso9660 /dev/cdrom /mnt
   ```

2. On the CD, navigate to packages/images and locate the appropriate driver.

3. Insert a USB drive into your computer.

4. Unzip (if .zip) or untar (if .tgz) the driver file to the USB drive.

Installing the 3ware Kernel Driver Module while Installing Red Hat Linux on a New Unit

Note: If Red Hat Linux is already installed and bootable on another drive, turn to "Installing the 3ware Kernel Driver Module on a Red Hat or Fedora Core Linux System that Boots From a Different Device" on page 43.

Note: We have tested some older systems where a drive connected to the motherboard interfered with using a drive or unit managed by the 3ware RAID controller as a boot device. Disconnecting the drive while installing Linux will eliminate this problem. After Linux is installed, the drive can be reconnected.

To install the 3ware kernel driver module while installing Red Hat or Fedora Core Linux on a new unit

1. Boot with the Red Hat or Fedora Core install disk:
 a. Insert the Linux installation disk into your computer.
 b. Make sure the boot order in your motherboard’s BIOS is correct; then start or reboot your computer.
 c. When the Welcome to Red Hat or Fedora Core display appears, type:
      ```
      linux dd
      ```
 A number of files will load and then a message will prompt you to insert your driver install disk.

2. Install the 3ware kernel driver module, using the driver install diskette:
 Insert the driver install diskette containing the 3ware driver and press Enter.
 The system automatically reports: Loading 3w-sas
3 When prompted, select the proper language and keyboard types for your locality.
4 After installation completes, remove media (CD and floppy disks).
5 Click reboot button to finish installation.

Installing the 3ware Kernel Driver Module on a Red Hat or Fedora Core Linux System that Boots From a Different Device

The steps for installing the 3ware kernel driver module vary slightly, depending on your specific installation requirements. Select the appropriate set of steps below, based on whether:

- You want to update the RAM disk
- You prefer to load the driver manually or from a script, instead of updating the RAM disk

About Variables In the Kernel Driver Module Installation Instructions

These conventions are used for variable text for kernel strings and module names in the instructions on the following pages.

Kernel String Conventions

<kernel string> refers to the kernel version.

The kernel string will have different endings, depending on the kernel you are using.

- For a default kernel, the kernel string will end in default. For example: 2.6.16-default
- For an SMP kernel (multi-processor), the kernel string will end in smp. For example: 2.6.16-smp
- For a Bigmem kernel, the kernel string will end in big. For example: 2.6.16-big
- For a i586 kernel, the kernel string will end in 586. For example: 2.6.16-586
- For a PAE kernel (Physical Address Extension), the kernel string will end in pae. For example: 2.6.16-pae
- For a Xen kernel, the kernel string will end in xen. For example: 2.6.16-xen
Module Naming Conventions

3w-sas.* refers to the specific kernel driver module you will copy in the examples shown in steps 3 and 4. The name of the kernel driver module you will copy (3w-sas.*) varies, depending on the kernel; however you will always copy it to a file named 3w-sas.ko for 2.6 kernels. Depending on the supported release, not all modules may be required or available.

The available kernel driver module files are:

- For default kernels: 3w-sas.ko
- For SMP kernels: 3w-sas.smp
- For Bigmem kernels: 3w-sas.big
- For i586 kernels: 3w-sas.586
- For PAE kernels: 3w-sas.pae
- For Xen kernels: 3w-sas.xen

To install the 3ware driver and update the RAM disk

1. Log in as root and open a console window.
2. Mount the CD which contains the 3ware kernel driver module.

 To mount the CD, type:
   ```bash
   mount /dev/cdrom /mnt
   ```

3. Copy the kernel driver module:

 For Redhat Linux Intel x86 and AMD, type:
   ```bash
   cp /mnt/packages/drivers/linux/redhat/<version>/x86/3w-sas.<ko or pae> /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```

 For Fedora Core on Intel x86 and AMD, type:
   ```bash
   cp /mnt/packages/drivers/linux/fedora/<version>/x86/3w-sas.<ko, 586, or pae> /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```
 If prompted to overwrite, type y.

 For Redhat Linux on AMD Opteron and Intel EM64T, type:
   ```bash
   cp /mnt/cdrom/packages/drivers/linux/redhat/<version>/x86_64/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```

 For Fedora Core on AMD Opteron and Intel EM64T, type:
   ```bash
   cp /mnt/packages/drivers/linux/fedora/<version>/x86_64/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```
 If prompted to overwrite, type y.

4. **For 2.6 Kernels**, add the following line to /etc/modprobe.conf
alias scsi_hostadapter 3w-sas

5 Update the modules.dep file, by issuing the following command:
/sbin/depmod -a

6 Run mkinitrd by entering the following:
/sbin/mkinitrd -v -f /boot/initrd-<kernel string>.img
where <kernel string> is the /lib/modules directory from which to copy
the 3w-sas driver.
Example:
/sbin/mkinitrd -v -f /boot/initrd-2.6.18-14.img 2.6.18-14

7 If you are using the GRUB boot loader, skip to Step 8.
If you are using the LILO boot loader, run LILO to update the boot record
on disk by typing the following:
/sbin/lilo
The output should be similar to:
Added linux *

8 Reboot.
The 3ware kernel driver module will be loaded from the ram disk
automatically at boot time.

To install the 3ware kernel driver module and load the module
manually instead of using a RAM disk

1 Log in as root and open a console window.

2 Mount the CD which contains the 3ware kernel driver module.
 To mount the CD, type:
mount /dev/cdrom /mnt and press Enter.

3 Copy the kernel driver module.
 For Redhat Linux on Intel x86 and AMD x86, type:
cp /mnt/packages/drivers/linux/redhat/<version>/x86/
3w-sas.<ko or pae> /lib/modules/<kernel string>/kernel/
drivers/scsi/3w-sas.ko

 For Fedora Core on Intel x86 and AMD x86, type:
cp /mnt/packages/drivers/linux/fedora/<version>/x86/
3w-sas. <ko, 586, or pae> /lib/modules/<kernel string>/
kernl/drivers/scsi/3w-sas.ko

 If prompted to overwrite, type y.

 For Redhat Linux on AMD Opteron and Intel EM64T, type:
Driver Installation

$ cp /mnt/packages/drivers/linux/redhat/<version>/x86_64/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko$

For Fedora Core on AMD Opteron and Intel EM64T, type:

$ cp /mnt/packages/drivers/linux/fedora/<version>/x86_64/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko$

If prompted to overwrite, type y.

4 Add the following line to /etc/modprobe.conf:
alias scsi_hostadapter 3w-sas

5 Update the modules.dep file, by issuing the following command:
/sbin/depmod -a

6 Load the kernel driver module manually. Type:
modprobe sd_mod
insmod /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko

You can also incorporate the insmod command into a startup script.

Driver Installation Under SUSE Linux

Materials required

- LSI 3ware CD
- Floppy diskette or USB drive, if you need to make a driver install disk
- SUSE Linux Installation disk (Not required if SUSE Linux is already installed on another drive.)

Creating a SUSE Linux Driver Disk

If you are installing SUSE Linux on a new drive or unit managed by the 3ware RAID controller, you will need to install the 3ware RAID controller driver at the same time as the operating system.

You can load the driver directly from the 3ware CD, or from a floppy diskette or USB drive on which you have installed the driver.
To create a driver install floppy diskette

1. Insert the 3ware CD into your Linux system. A GUI such as X windows is required to load the 3ware menu.

 To manually mount the CD, type:
   ```
   mount -t iso9660 /dev/cdrom /mnt
   ```

 To start autorun, type:
   ```
   /mnt/autorun
   ```

2. When the 3ware Menu appears, click Driver Disk Images.

3. In the 3ware Driver Disk Images menu, click the button for the driver disk you want to create.

 A confirmation window opens.

4. Insert a blank diskette into a drive and click the Yes button to begin copying the driver to the floppy diskette.

Note: If you need to create a Linux driver diskette for a Linux distribution other than what is available on the menu, search the LSI Knowledge Base for keyword 14546 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

To copy the driver to a USB drive

1. Insert the 3ware CD into your system.

 To manually mount the CD, type:
   ```
   mount -t iso9660 /dev/cdrom /mnt
   ```

2. On the CD, navigate to packages/images and locate the appropriate driver.

3. Insert a USB drive into your computer.

4. Unzip (if .zip) or untar (if .tgz) the driver file to the USB drive.

 Note: If using Winzip or another Windows utility to extract the Linux file, use the .zip version instead of the .tgz version. Otherwise the files will not be compatible with Linux.

Installing the 3ware Kernel Driver Module while Installing SUSE Linux on a New Unit

Note: If SUSE Linux is already installed on another drive, turn to “Installing the 3ware Kernel Driver Module on a SUSE Linux System that Boots from a Different Device” on page 48.
1 Boot directly from the SUSE installation CD #1 or DVD.

2 When installing SUSE, press either the F6 key or the F3 key, depending on the version.

 You will then be prompted to insert the driver install disk and to select the media type.

3 Insert the 3ware Linux SUSE driver installation disk or 3ware CD.

4 Click OK and continue with the installation.

Installing the 3ware Kernel Driver Module on a SUSE Linux System that Boots from a Different Device

In the instruction below, replace `<kernel string>` with the kernel version you are using (i.e. 2.6, etc.).

In addition, replace `3w-sas.*` with the appropriate module file for your kernel. Depending on the supported release, not all modules may be required or available.

The available kernel driver module files are:

- For default kernels: `3w-sas.ko`
- For SMP kernels: `3w-sas.smp`
- For high memory kernels: `3w-sas.big`
- For i586 kernels: `3w-sas.586`
- For Xen kernels: `3w-sas.xen`

1 Log in as root.

2 Edit `/etc/sysconfig/kernel` and make sure the file contains the following line:

   ```ini
   INITRD_MODULES="reiserfs 3w-sas"
   ```

 Note: Other modules may be listed before or after `3w-sas`, depending on the installation. You may see entries like `reiserfs`, `ext3` or `scsi_mod`. If present, leave them (ensuring there is a space between each module name), since the system needs them to boot properly.

3 If you are using SUSE 11.2 or earlier, after the existing `3w-9xxx` entry, add `3w-sas` to the file `/lib/modules/<kernel string>/modules.dep`
4 Mount the CD-ROM and copy and install the appropriate kernel driver module for your system.

```
mount -t iso9660 /dev/cdrom /mnt
```

Copy the kernel driver module:

For openSUSE and SUSE Linux Enterprise Server 32-bit (x86), type:
```
cp /mnt/packages/drivers/linux/suse/<version>/x86/<kernel extension>/lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
```

For openSUSE and SUSE Linux Enterprise Server 64-bit (x86_64), type:
```
cp /mnt/packages/drivers/linux/suse/<version>/x86_64/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
```

If prompted to overwrite, type y.

5 To load the kernel driver module, type:
```
modprobe sd_mod
```
```
insmod /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
```

Note: If the kernel driver module installation fails, confirm that the correct driver was installed. If a driver is not available for your system, you will need to compile your own driver. For more information, search the LSI Knowledge Base for keyword 14546 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

6 Type:
```
/sbin/depmod -a
```

7 Type:
```
/sbin/mknitrd
```

8 If you are using the GRUB boot loader, you are finished.

If you are using the LILO boot loader, run LILO to update the boot record on disk by typing the following:
```
/sbin/lilo
```

The output should be similar to:
```
Added linux *
```
Compiling a 3ware Driver for Linux

If you are using a Linux distribution for which there is not a compiled driver available from 3ware, you can copy the source from the 3ware CD or download the source from the LSI website and compile a new driver. For more information, search the LSI Knowledge Base for keyword 14546 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.
3ware BIOS Manager (3BM)
Introduction

This section describes the basics of using 3ware BIOS Manager (3BM), one of the tools you can use to configure and maintain the units connected to your 3ware RAID controller. It is organized into the following topics:

- Starting 3BM
- Exiting the 3BM Configuration Utility
- Working in the 3BM Screens
- Adjusting BIOS Option Settings
- Displaying Information About the Controller and Related Devices
- Getting Help While Using 3BM

For information about doing particular tasks in 3BM, refer to the later sections in this guide.

Starting 3BM

You access 3BM during the start-up process for your computer.

1. Power up or reboot your system.
2. While the system is starting, watch for a screen similar to the 3ware BIOS screen below.

Figure 21. 3ware BIOS Screen

----Press <Alt-3> to access 3ware BIOS Manager ----
3ware ATA RAID Controller: 9750-4I
BIOS: BE9X X.XX.XX.XXX Firmware: FE9X X.XX.XX.XXX
BBU Status: Not Present
Number of online units: 1, available drives: 0, hot spare: 0, offline units: 0
Available drives:
 SATA - SAMSUNG HD160JJ 149.04 GB Phy 0
Exportable Units:
 3drive 64K RAID5 298.00 GB (Zygote3) DEGRADED
 SATA - SAMSUNG HD160JJ 149.04 GB (Phy 1)
 SATA - SAMSUNG HD160JJ 149.04 GB (Phy 3)
3 Press Alt-3 immediately to bring up the 3ware BIOS Manager (3BM).

Normally your 3ware configuration remains on-screen for just a few seconds. However, if a unit has degraded, the screen indicates the problem and remains on your screen longer.

4 If you plan to make changes to your configuration and need to backup data before continuing, press ESC and do so now. Otherwise, press any key to continue.

If 3BM detects a degraded array, a red message box appears, to alert you to the problem. For information about rebuilding a degraded array, see “About Degraded Units” on page 144.

5 If you have more than one 9750 controller in your system, a screen lists the available boards (see Figure 22).

Figure 22. 3ware Controller Board Selection Screen

If you have more than 4 boards, you will only see four at first (only four can be processed at a time). After you exit from 3BM, you will have an opportunity to access the BIOS again, to access the remaining boards.

Note: If you have a combination of older 3ware controllers in your system, the 7000/8000-series controllers are not listed on the selection screen shown in Figure 22. Instead, an additional BIOS summary will appear, similar to Figure 21.

If you have two of the same series controllers that have different versions of the firmware installed, they will also appear in different BIOS summaries, and will launch different versions of 3BM.

Highlight the board with which you want to work and press Enter.

You see a screen similar to the warning message below, warning you that changing your disk array configuration may overwrite data on the disks.
Exiting the 3BM Configuration Utility

When you are ready to exit the 3BM configuration utility, you have the option to save the configuration changes you have made, or to discard the changes.

To save your configuration modifications

1. Press the F8 or Esc key.

 A list of affected drives appears, and a messages ask you to confirm the configuration.

2. Type Y.

 The booting process resumes.

To exit without saving changes

1. Press Esc.

2. If you have unsaved changes, 3BM will ask you whether you want to save the changes and exit, or exit without saving the changes.

 If you want to exit without saving changes, type N.

 If you change your mind and want to save the changes, type Y.

Exception: Changes made to controller policies are saved when you leave the Policy screen. Pressing F8 is not required to save those changes. For more about changing policies, see “Setting the Auto Rebuild Policy” on page 82.
Working in the 3BM Screens

The main 3BM screen (Figure 24) shows the current configuration for the drives attached to your controller, and a list of any available drives. Unusable and incomplete drives are also shown.

Figure 24. 3BM Main Display

You will see one or more of the following sections in the main 3BM screen:

- **Available Drives** lists any unconfigured drives that are not associated with an array, and hot spares. If this section does not appear, there are no available drives.

- **Direct Attached** lists the drives directly attached to the controller.

- **Enclosure** lists the drives attached through an enclosure.

- **Exportable Units** lists the existing units and the drives contained in each unit. These are the units that will be available to the operating system when you boot your computer. If this section does not appear, no units have been configured.

 If you have more than one unit, the boot unit is the one at the top of the list. (You can change the order by highlighting a unit and pressing the PgUp or PgDn key.)

- **Unusable Arrays** lists any RAID configuration missing too many drives to construct the unit. For example, a RAID 5 unit with two or more drives missing would appear in this list.

- **Incomplete Drives and Others** lists drives that are remaining from a unit with missing or failed drives and drives that are not usable.

 When some of the drives are remaining from a unit, you can power down and add the missing drives to complete the unit. To use drives that are listed here in other units, you must first delete them. For more information, see “Deleting a Unit” on page 128.
If any of the sections are not shown, it means that there are no items of that type connected to the controller.

Table 6 lists how to move around and select information in the 3BM screens. When these commands are available in 3BM, they appear at the bottom of the 3BM screen.

Table 6: Working in 3BM

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use these keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move between units or drives in a list, between fields, and between buttons</td>
<td>Up and Down Arrow Keys</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Left and Right Arrow Keys</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>Tab and Shift+Tab</td>
</tr>
<tr>
<td>Select (or unselect) what is currently highlighted.</td>
<td>Enter or the Spacebar</td>
</tr>
<tr>
<td>A selection may be a drive in a list of drives, a button at the bottom of</td>
<td></td>
</tr>
<tr>
<td>the screen, or a field in the middle of the screen.</td>
<td></td>
</tr>
<tr>
<td>In lists, an asterisk appears to the left of selected drives or units</td>
<td></td>
</tr>
<tr>
<td>Display a drop-down list of available choices in a field</td>
<td>Enter</td>
</tr>
<tr>
<td>Move between choices in a field list</td>
<td>Up and Down Arrow Keys</td>
</tr>
<tr>
<td>Select all available drives</td>
<td>Alt+A</td>
</tr>
<tr>
<td>In the list of units, expand a selected unit to see any subunits and</td>
<td>Shift+</td>
</tr>
<tr>
<td>drives in the unit, or contract it to see only the heading again.</td>
<td></td>
</tr>
<tr>
<td>In the list of available drives these keys also work to show or hide the</td>
<td></td>
</tr>
<tr>
<td>drives in each enclosure.</td>
<td></td>
</tr>
<tr>
<td>Highlight one of the primary buttons on the main screen:</td>
<td></td>
</tr>
<tr>
<td>• Create Unit</td>
<td>Alt+C</td>
</tr>
<tr>
<td>• Delete Unit</td>
<td>Alt+D</td>
</tr>
<tr>
<td>• Maintain Unit</td>
<td>Alt+M</td>
</tr>
<tr>
<td>• Settings</td>
<td>Alt+S</td>
</tr>
<tr>
<td>• Information</td>
<td>Alt+I</td>
</tr>
</tbody>
</table>
Table 6: Working in 3BM (Continued)

<table>
<thead>
<tr>
<th>To do this</th>
<th>Use these keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify (or unspecify) a drive as a hot spare</td>
<td>S</td>
</tr>
<tr>
<td>Blink the LED associated with a drive</td>
<td>F4, from the Drive Information screen (requires use of a supported enclosure)</td>
</tr>
<tr>
<td>Return to starting values for this session in the 3ware BIOS Manager</td>
<td>F6 Note: F6 cannot bring back previous policy settings; they are saved when you exit the Policy screen.</td>
</tr>
<tr>
<td>Rescan the controller and update the status of units and drives</td>
<td>Alt+R</td>
</tr>
<tr>
<td>Return to the main 3ware BIOS Manager screen, from the Advanced Details screen</td>
<td>Any key</td>
</tr>
<tr>
<td>Move a highlighted unit up or down in the list of exportable units</td>
<td>Page Up Page Down (Available only when there are multiple units and a unit is highlighted.)</td>
</tr>
<tr>
<td>(The top-most unit will become the bootable unit, if you install the OS.)</td>
<td></td>
</tr>
<tr>
<td>Display context sensitive help</td>
<td>F1 or Alt-F1</td>
</tr>
<tr>
<td>If you have multiple 3ware controllers in your system, return to the board selection screen.</td>
<td>Esc</td>
</tr>
<tr>
<td>Exit the utility and save or abandon all changes.</td>
<td>Esc</td>
</tr>
<tr>
<td>Exit the utility and save all changes</td>
<td>F8</td>
</tr>
</tbody>
</table>

Adjusting BIOS Option Settings

3BM includes a few settings that let you customize the behavior of the BIOS for the selected controller. You can access these settings by selecting **Settings > BIOS Settings** from the 3BM BIOS Manager screen.
Power-On Self Test (POST) Display Options

Display Control. Specifies what level of detail to display on the start-up screen.

- **Full** displays all available information about the items attached to the controller, including available drives, hot spares, and configured units.
- **Unit Only** displays only configured units.
- **Summary** displays a one-sentence description of the items attached to the controller.

Array View. Specifies what level of information to show about configured units on the start-up screen.

- **Expanded** lists each unit and shows the specific drives that make up the unit.
- **Collapsed** lists only the configured units.

Pause Time. Sets the number of seconds that BIOS loading will pause to displaying the RAID configuration before continuing to boot the operating system. You can set a pause time of up to 10 seconds. The default is 6 seconds.

Full Screen Control. When you have many drives attached to a controller and choose to display the Full level of detail, the information can extend beyond a screens’ worth. The Full Screen Control setting lets you specify whether to wait for a keystroke when the screen is full, before displaying additional information. This option can be either No Key or Wait Key.

BIOS Loading Options

Load Control. This setting is enabled by default. It allows you to boot from RAID units or drives managed by the controller. If this setting is disabled, you will only be able to boot from hard drives or peripheral devices (such as CD-
ROM or floppy) that are not managed by the controller. You may wish to disable this setting if you have multiple controllers in a "headless" system with no monitor or keyboard.

Options for Entering BIOS

Hot Key. The default key combination for entering the BIOS is Alt-3. If you wish, you can change this key combination to Ctrl-6.

Require Password. To control access to the BIOS setup program, you can enable a security password. If you enable the password function, you must then specify a password.

Change Password. This field is where you will enter a password if you have enabled the **Require Password** setting. This password will control access to the BIOS.

Note: During the boot process, you can also bypass loading of the BIOS for all controllers for one time only by pressing **Alt-B**. This is useful to temporarily boot from a non-3ware device without having to change the system’s boot order.

Changing BIOS Settings

You can change the BIOS settings from the Bios Option Settings screen in 3BM.

To change the BIOS Settings

1. On the 3BM BIOS Manager screen, **Tab** to **Settings** and press **Enter**.
2. On the pop-up menu, select **BIOS** and press **Enter**.

The BIOS Option Settings screen appears.
3. **Tab** through the options and make the desired changes.
4. **Tab** to **OK** and press **Enter** to return to the main screen.
Displaying Information About the Controller and Related Devices

The 3BM Information menu gives you access to detailed information about the controller, BBU, drives, enclosures, and phys.

To see information about the controller or a related device

1. On the 3BM BIOS Manager screen, Tab to Information and press Enter. A pop-up menu appears, listing the available information screens.

2. On the pop-up menu, select the item about which you want to see details and press Enter.

Figure 26. Controller Information Screen

A page appears showing details about selected item.

For more about how to use these pages, see the following topics:

- “Viewing Information About a Controller” on page 77
- “Viewing Battery Information” on page 186
- “Viewing a List of Drives” on page 141
- “Viewing a List of Enclosures” on page 191
- “Viewing Information About a Phy” on page 87

To return to the main screen

- Press Enter.
Getting Help While Using 3BM

You can get help with using 3BM while you are in the BIOS manager.

- Press **F1** or **Alt-F1** at any time.
 - A description of the basic 3BM tasks appears.
 - When you’re finished using help, press **Esc** to close the help window.
3DM 2 (3ware Disk Manager)

Introduction

3ware Disk Manager 2 (3DM 2) allows you to manage and view the status of your 3ware RAID controllers and associated drives.

There are two parts to 3DM 2: a process, that runs in the background on the computer where you have installed your 3ware controller, and a web application that can be used to access it. 3DM runs as a service under Microsoft Windows, and as a daemon under Linux. When the 3DM 2 process is running, you can use your browser to go to 3DM 2 application pages, where you can view status information about the controller and RAID units, create RAID units, and perform other administrative and maintenance tasks locally or remotely.

Two levels of access to 3DM 2 are provided: user and administrator. Users have view-only access, and can check the status of drives and units. Administrators can view and make changes, using 3DM 2 to configure RAID units and designate hot spares, and to perform maintenance tasks on RAID units.

In this section, information is organized into the following topics:

- Browser Requirements for 3DM 2
- Installing 3DM
- Starting 3DM 2 and Logging In
- Working with the 3DM 2 Screens
- Setting Up 3DM 2 Preferences

For details about the settings and fields on each of the 3DM 2 screens, see “3DM 2 Reference” on page 200.

For additional information about managing and maintaining 3ware controllers using 3DM, see the remaining chapters in this guide.

Note: 3DM 2 includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).
Browser Requirements for 3DM 2

3DM 2 runs in most current web browsers. Tested and supported browsers include:

- Internet Explorer 5.5 and above
- Mozilla Firefox
- Safari

Additional requirements:

- JavaScript must be enabled
- Cookies must be enabled
- For best viewing, use a screen resolution of 1024 X 768 or greater, and set colors to 16 bit color or greater.

Installing 3DM

3DM 2 can be installed from the 3ware CD that came with your 3ware RAID controller. You can also download the current version from the website at http://www.lsi.com/channel/ChannelDownloads. Details about the installation are described in Appendix B, “Software Installation” on page 310.

3DM must be installed on the system in which the controller is installed. 3DM does not have to be installed on a remote system in order to remotely manage the 3ware controller; you simply enter the correct URL into a browser on the remote system. You will need to enable remote access first, however.

Starting 3DM 2 and Logging In

3DM runs as a service under Windows, and as a daemon under Linux. Normally after installation, the 3DM 2 process starts automatically when you start your system.

It is a good idea to leave the 3DM 2 process running on the system that contains your 3ware RAID controller. That way email alerts can be sent by 3DM 2, and administrators can manage the controller remotely, if remote administration is enabled.

When 3DM 2 is running in the background on your computer, you can access the 3DM 2 web application through your browser to check status information and manage your 3ware RAID controller.

If you want to check the status of a controller from a different computer, see “Viewing 3DM 2 Remotely Using a Web Browser” on page 65.
Logging In to the 3DM 2 Web Application

When the 3DM 2 process is running in the background, you can log into the 3DM 2 application pages using a browser.

Two levels of access are provided:

- **Users** can check the status of the controller, units, and attached drives.
- **Administrators** can check status, configure, and maintain the units and drives on the 3ware controller.

Note: Administrator and User status in 3DM 2 is not related to Administrator/User settings in the operating system.

To log in to the 3DM 2 web application

1. Open your browser and enter the URL for your system.

The default URL is `https://localhost:888/`

 If you are using Fedora Core 10, use `https://127.0.0.1:888`

 (Fedora Core 10 made changes that affected 3DM 2. https://localhost:888 can no longer be used in a web browser to access 3DM 2. Other Linux distributions may also be affected.)

 If remote access is enabled, you can also replace “localhost” with the IP address of the computer that contains the 3ware controller. For example: `https://<IP address>:888/`

 Note: If you receive a page not found message, make sure you entered the URL correctly by specifying https, not http. If you did, 3DM 2 may not be running in the background. You can start it manually. See, “Managing the 3DM 2 Daemon under Linux” on page 64 or “Starting the 3DM 2 Process under Microsoft Windows” on page 65.

2. The first time you start 3DM 2, your browser may prompt you for a security certificate. If it does, accept the certificate.

 For example, when using Windows Internet Explorer, you may see the message shown below. In this example, click View Certificate and accept the certificate so that you do not see the security message each time you start 3DM 2.
3DM 2 (3ware Disk Manager) Introduction

Figure 27. Security Certificate Message from Browser

(You can also click Yes or Continue, in which case you will see this message the next time you start 3DM 2.)

If you are using a different browser, the steps to accept the certificate will be different.

3 When the 3DM 2 logon screen appears, select whether you are a User or Administrator.

4 Enter your password and click Login.

If you are logging in for the first time after installing 3DM 2, the default password for both User and Administrator is 3ware.

Note: If you forget the passwords, uninstalling and reinstalling 3DM 2 resets the passwords to 3ware.

Note: If you close your browser, 3DM continues to run in the background on the system.

Managing the 3DM 2 Daemon under Linux

3DM should start automatically after installation and upon bootup. If it does not, use the steps below to manage it.

To manage the 3DM daemon manually

1 Login as root on the machine on which 3DM is installed.

2 For Linux:

 /etc/rc.d/init.d/tdm2 start|stop|restart

 Or (some Linux versions use this directory instead):

 /etc/rc.d/tdm2 start|stop|restart

 Note: If you forget the passwords, uninstalling and reinstalling 3DM 2 resets the passwords to 3ware.

 Note: If you close your browser, 3DM continues to run in the background on the system.
Starting the 3DM 2 Process under Microsoft Windows

3DM should start automatically after installation and upon bootup. If it does not, use the steps below to start it.

To start the 3DM process manually

1. On the system on which 3DM is installed, login as Administrator.
2. Open Control Panel>Administrative Tools>Services>3DM2 and select the Start/Play icon.

Viewing 3DM 2 Remotely Using a Web Browser

When remote administration is enabled on the 3DM 2 Settings page, you can use 3DM 2 to check status and administer your 3ware RAID controller from a browser on any computer, over an internet connection.

You do not need to install the 3DM 2 software on the remote computer.

To connect to 3DM 2 through your web browser

- In the address line of your browser, enter the URL or IP address of the system containing the 3ware RAID controller.

If you do not know the URL or IP address for the system, you can contact your network administrator or from a Windows command prompt, type ipconfig. From a Linux command prompt, type ifconfig.

Note: When using 3DM 2 to access a remote system, and auto logout is enabled, the time on the local system must match the time on the file server. If the time varies by more than 30 minutes, it will not be possible to remotely monitor the system (you will not be able to log in). If you are in a different time zone, you must first change the time of the local system to match the time of the remote system.

Working with the 3DM 2 Screens

3DM 2’s features are organized on a series of pages you view in your browser.

After you log in to 3DM 2, the Summary page shows a list of controllers installed in the computer at the URL you specified.

Note: If you expect to see a controller that is not listed, it may not be compatible with the driver that is loaded; a firmware flash upgrade may be required.
The menu bar across the top of the screen gives you access to other pages in 3DM 2. You can move between pages by using the menu bar, or by clicking a link on the page.

The main area of the page provides summary or detail information about your 3ware RAID controller and the resources connected to it.

As you work in 3DM 2, the Messages area just below the menu bar displays information about the results of commands you have selected.

Tip: If you have a question about something you see on the screen, just click the Help button in the menu bar.

3DM 2 Menus

The 3DM 2 menu bar groups access to a number of 3DM 2 pages on menus, and provides direct link access to others.

Status information is available from the **Information menu**. You can view controller, unit, and drive information for a particular controller.
The **Management menu** gives you access to tasks used for managing controller-level settings (background task rate, unit polices such as enabling of unit write cache, and controller settings that affect all units managed by the controller), tasks that can be scheduled (rebuild, verify, and self-test), and maintenance of individual units. Unit configuration can also be done through the **Management > Maintenance** page.

The **Monitor menu** gives you access to the Alarms page, the BBU page, and the Enclosure Summary page. The **Alarms** page shows a list of alarms, including the specific alarm message, and the exact date and time it occurred. The **BBU** page shows the status of a Battery Backup Unit (BBU), if one is installed, and allows you to test the battery. The **Enclosure Summary** page provides lists the enclosures connected to the controller and lets you drill down for more detailed status information about each.

The **3DM 2 Settings** page lets you set preferences, including email notification for alarms, passwords, page refresh frequency, whether remote access is permitted, the communication port which 3DM 2 will use for listening, and whether command logging is enabled.

Help lets you access information about using 3DM 2. The Help is context-sensitive, so you first see information about the page you now have in view. A Table of Contents and Index are available to help you find other information.
Viewing Information About Different Controllers

If you have more than one 3ware RAID controller in the system, you select the one you want to see details about from the drop-down list at the right of the menu bar.

This drop-down is available on all pages that provide controller-specific features.

Figure 30. 3DM 2 Controller Selection Drop-down

Note: Throughout these instructions, the term current controller is used to refer to the controller which is currently selected in this drop-down list.

Note: The fields and columns in 3DM 2 vary for different models of 3ware RAID controllers. If you have multiple controllers of different models, you may notice some differences when switching between them in 3DM 2. For example, when displaying information about the 9750 or 9690SA controllers, 3DM 2 displays “VPort” (for virtual port) on some pages while for earlier controllers the label is “port.”

Refreshing the Screen

You can refresh the data on the screen at any time by clicking Refresh Page in the menu bar. This causes 3DM 2 to update the information shown with current information from the controller and associated drives.

Automatic refreshes can also be set. For details, see “Setting the Frequency of Page Refreshes” on page 75.

Note: If you click Refresh on the browser window instead of on the 3DM 2 menu bar, you will be taken back to the Summary page.
3DM 2 Screens and What They're Used For

The table below shows a list of the pages you work with in 3DM 2 and describes what they are used for. Details about each page and the fields and features on it are provided in Chapter 12, “3DM 2 Reference”. The page names in the table provide links to details about that page.

In addition, the step-by-step instructions provided in the chapters on configuring and maintaining your RAID controller and units explain how to do particular tasks in 3DM 2.

Table 7: List of 3DM 2 Pages

<table>
<thead>
<tr>
<th>3DM 2 Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Summary page</td>
<td>Provides basic information about each 3ware RAID controller in your system.</td>
</tr>
<tr>
<td></td>
<td>To see this page, click Summary in the menu bar.</td>
</tr>
<tr>
<td>Controller Details page</td>
<td>Provides detailed information about the current controller.</td>
</tr>
<tr>
<td></td>
<td>To see this page, choose Information > Controller Details from the menu bar.</td>
</tr>
<tr>
<td>Unit Information page</td>
<td>Shows a list of the units on the current controller and provides summary information about each unit.</td>
</tr>
<tr>
<td></td>
<td>To see this page, choose Information > Unit Information from the menu bar. or click an ID number on the Controller Summary.</td>
</tr>
<tr>
<td>Unit Details page</td>
<td>Shows details about a particular unit.</td>
</tr>
<tr>
<td></td>
<td>To see this page, click an ID number on the Unit Information page.</td>
</tr>
<tr>
<td>Drive Information page</td>
<td>Shows a list of drives on the current controller and provides summary information about each drive.</td>
</tr>
<tr>
<td></td>
<td>To see this page, choose Information > Drive Information from the menu bar.</td>
</tr>
<tr>
<td>Drive Details window</td>
<td>Shows the SMART data for a specific drive, and shows additional detail information for the drive.</td>
</tr>
<tr>
<td></td>
<td>To see this page, click the Port # for a drive on the Drive Information page.</td>
</tr>
</tbody>
</table>
Table 7: List of 3DM 2 Pages

<table>
<thead>
<tr>
<th>3DM 2 Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Phy Summary page</td>
<td>Shows the properties of controller phys for 9750 RAID controllers. There are two ways to access this page. If you have a direct-attached drive you can access this page from the Information > Drive Information page by clicking the phy ID for the drive. If all drives are connected via expanders, navigate to the Management > Controller Settings page. Under Other Controller Settings click the # link for Number of Controller Phys.</td>
</tr>
<tr>
<td>Controller Settings page</td>
<td>Lets you view settings that affect the units on the current controller and change some of those settings. Controller-level settings that can be changed include background task rate, Auto Rebuild, Auto-Carving, and Carve Size. Some additional policies are shown that can only be changed in the BIOS or CLI. Unit-level settings include specifying the StorSave Profile and enabling or disabling the Write Cache, Read Cache, Auto-Verify, Overwrite ECC, Queuing, and Rapid RAID Recovery. To see this page, choose Management > Controller Settings from the menu bar.</td>
</tr>
<tr>
<td>Scheduling page</td>
<td>Lets you view and change the schedule for tasks that affect all units on the current controller. To see this page, choose Management > Scheduling from the menu bar.</td>
</tr>
<tr>
<td>Maintenance page</td>
<td>Lets you configure new units and make changes to existing units. To view this page, choose Management > Maintenance from the menu bar.</td>
</tr>
<tr>
<td>Alarms page</td>
<td>Shows a list of alarms, including the specific alarm message, and the exact date and time it occurred. To view this page, choose Monitor > Alarms on the menu bar.</td>
</tr>
<tr>
<td>Battery Backup page</td>
<td>Shows the status of a Battery Backup Unit (BBU), if one is installed, and allows you to test the battery. To view this page, choose Monitor > Battery Backup on the menu bar.</td>
</tr>
<tr>
<td>Enclosure Summary page</td>
<td>Lists the installed and supported enclosures attached to your 3ware controller. To view this page, choose Monitor > Enclosure Support on the menu bar.</td>
</tr>
</tbody>
</table>
The 3DM 2 Settings page lets you define preference settings that affect the overall operation of 3DM 2.

On the 3DM 2 Settings page you can perform the following tasks:

- Setting and Changing 3DM 2 Passwords
- Managing E-mail Event Notification
- Enabling and Disabling Remote Access
- Setting the Listening Port #
- Setting the Frequency of Page Refreshes
- Controlling Command Logging in 3DM 2

Setting and Changing 3DM 2 Passwords

3DM 2 provides different access levels for users and administrators.

The Administrator access level allows the user to fully configure 3DM 2. The User access level allows the user to view pages within 3DM 2. These passwords work independently of each other.

The default password for both the User and Administrator is “3ware”.

Passwords are case sensitive.

You can only change passwords if you are logged in as Administrator. If you change the Administrator password, you will be automatically logged out, and must log back in with the new password.

Table 7: List of 3DM 2 Pages

<table>
<thead>
<tr>
<th>3DM 2 Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Details page</td>
<td>Shows details about a particular enclosure, including status information. You can also use this page to blink the LED for a particular drive. To view this page, click the ID number of the Enclosure on the Enclosure Summary page.</td>
</tr>
<tr>
<td>3DM 2 Settings page</td>
<td>Lets you set preferences, including email notification for alarms, passwords, page refresh frequency, whether remote access is permitted, whether command logging is enabled, and the incoming port which 3DM 2 will use for listening. To view this page, click 3DM 2 Settings on the menu bar.</td>
</tr>
</tbody>
</table>
To set or change the password

1. Click **3DM 2 Settings** on the 3DM 2 menu bar.

2. On the 3DM 2 Settings page, in the **Password** section, select the type of password you want to change: **User** or **Administrator**.

3. Type the current password in the **Current Password** field.

 If you are changing the password for the first time, the factory-set default password is **3ware**.

4. Enter the new password in the **New Password** field and again in the **Confirm New Password** field.

5. Click the **Change Password** button to enact the change.

Note: If you forget your password, you can uninstall 3DM 2 and then reinstall it. This will reset the password to the default password, **3ware**.

Managing E-mail Event Notification

3DM 2 can notify you when the 3ware RAID controller requires attention, such as when a disk unit becomes degraded and is no longer fault tolerant.

E-mail event notification can only occur while 3DM 2 is running, so it is recommended that the 3DM 2 process be left running in the background on the system that contains the 3ware RAID controller.

When events occur, notification can be e-mailed to one or more recipients. You can specify the type of events for which notifications will be sent by selecting the severity:

- **Information** will send e-mails for all events
- **Warning** will send e-mail for events with severity of Warning and Error.
- **Error** will send e-mail for events with severity of Error only.

Events are listed on the 3DM 2 **Alarms** page.

Event notification can be set up during 3DM 2 installation, and can be changed on the 3DM 2 Settings page.

To set up event notification

1. Click **3DM 2 Settings** on the menu bar.

2. In the **E-mail Notification** section of the 3DM 2 Settings page, enter or change the settings you want.
• Enable or Disable all notifications.
• Set the severity level of events for which e-mail notifications are sent.
• Specify the email address of the sender. This will appear in the “From” field of the e-mail.
• Enter the e-mail address(es) to which notifications are sent. (Separate multiple addresses with a comma (,), a semicolon (;), or a space ().
• Enter the SMTP server name or IP of the mail server for the computer where the 3ware controller is installed.
• If your email server requires authentication, enter the Mail Server Login and Password.
• If your email server requires or supports encrypted email, select Yes in the field Mail Server Port Uses SSL.

 Tip: If you are not sure whether or not this applies to you, try enabling it, and then use the **Send Test Message** feature to try out the configuration setting. If the configuration is not correct, you will see an error message at the top of the page. If you do receive an error, disable the setting, and try the test again.

3 Click **Save E-mail Settings**.

To send a test message
You can send a test message to make sure you’ve entered the e-mail notification settings correctly.

• Click **Send Test Message**.

Enabling and Disabling Remote Access

When remote access is enabled, a user can connect to 3DM 2 over the internet or an intranet, to check status or administer the controller and associated drives. (See “Viewing 3DM 2 Remotely Using a Web Browser” on page 65.)

If remote access is disabled and a user attempts to connect to 3DM 2 remotely, they will see the following error message: “Remote Access to 3DM 2 has been disabled. Please connect using the local machine by entering “localhost” in the URL bar.”

Remote access can be enabled or disabled on the 3DM 2 Settings page.

To enable or disable remote access

1 Click **3DM 2 Settings** on the menu bar.

2 In the **Remote Access** section of the 3DM 2 Settings page, select either **Enabled** or **Disabled** in the **Allow Remote Connections** field.
The page refreshes, and a message at the top of the screen confirms that remote access has been enabled or disabled.

Setting the Listening Port #

You can set the port which 3DM 2 uses to listen for incoming messages. If you are not sure which port would be the best to use, leave this set to the default port of 888.

To set the listening port

1. Click **3DM 2 Settings** on the menu bar.
2. In the **Listening Port #** section of the 3DM 2 Settings page, enter the port number in the **Listening Port** field.
3. Click **Change Port**.

The page refreshes, and a message at the top of the screen confirms that the listening port has been changed.
Setting Up 3DM 2 Preferences

Setting the Frequency of Page Refreshes

Since the status of the drives attached to your 3ware RAID controller can change while you are viewing information about them in 3DM 2, it is important to refresh the page information regularly. That way you can be assured that the information you see in 3DM 2 is current.

You can manually refresh the information on a page by clicking Refresh Page in the menu bar. But you can also have 3DM 2 refresh the information on a regular basis.

To set the frequency of page refreshes

1. Click 3DM 2 Settings on the menu bar.
2. In the Page Refresh section of the 3DM 2 Settings page, select how often you want the page to be refreshed in the Minutes Between Refresh field.

Note: If you do not want 3DM 2 to refresh the screen automatically, select Never in the Minutes Between Refresh field. You can then refresh manually by clicking Refresh on your web browser.

Controlling Command Logging in 3DM 2

Command logging provides the ability to log each command that makes a change to the controller configuration in a log file (tw_mgmt.log). This can be useful for trouble-shooting.

You can enable and disable command logging from the 3DM 2 Settings page.

To enable or disable 3DM 2 command logging

1. Click 3DM 2 Settings on the 3DM 2 menu bar.
2. In the Server Configuration section of the 3DM 2 Settings page, select either Enabled or Disabled in the Command Logging field.
Where to find the command logging file (tw_mgmt.log)

Under Linux, tw_mgmt.log is in the /var/log directory.

For Windows Vista and Windows Server 2008, tw_mgmt.log is in \ProgramData\3ware. (Note that ProgramData is a hidden folder by default.)

For earlier versions of Windows, tw_mgmt.log is in \Documents and Settings\All Users\Application Data\3ware.
Configuring Your Controller

This section describes how to view details about the controller, check its status, and change configuration settings that affect the controller and all of the drives connected to it. It is organized into the following sections:

- Viewing Information About a Controller
- About Controller Policies
- Viewing Controller Policies
- Setting the Auto Rebuild Policy
- Using Auto-Carving for Multi LUN Support
- Setting the Size of Volumes Created with Auto-Carving
- Enabling and Setting Up Staggered Spin-up
- Viewing Information About a Phy
- Changing the Phy Link Speed

Note: Background task rate is also set for all units on a controller. For information about setting the task rate, see “Setting Background Task Rate” on page 168.

Viewing Information About a Controller

You can check the controller model, serial number, firmware and driver versions, and the status of the 3ware RAID controller in your computer.

If you have more than one controller in your system, you can easily view information about each one using 3DM. If you are working at the BIOS level in 3BM, you access each controller separately.

To see details about a controller in 3DM 2

1. Start 3DM 2 and log in as an administrator.

 The 3DM 2 Unit Information page appears, listing all the 3ware controllers installed in your system.

 The right-most column of the list shows the status of each controller.
Configuring Your Controller

Figure 32. Controller Summary Page

To see more details about a particular controller, click the ID link for that controller to display the Unit Information page.

To see information about a different controller in the 3DM 2 pages

If you have more than one controller in the system, you can switch between them by selecting the one you want from the Select Controller drop-down list at the right of the menu bar. This drop-down is available on all pages that provide controller-specific features.

When you select a different controller from this list, the page in view changes, to reflect the details for the controller you selected.

Tip: If you are managing controllers remotely, the list of controllers is for the machine with the IP or URL you entered in the browser address bar.

Note: Throughout this documentation, the term current controller is used to refer to the controller currently selected in this drop-down list.

To see information about a controller in 3BM (BIOS)

1. Power up or reboot your system.
2. While the system is starting, watch for a screen showing information about the controller and units you want to work with.

 When you have more than one controller installed, information about each one will be shown, sequentially.
3. Press Alt-3 to bring up the 3ware BIOS Manager (3BM).
4 Tab to Information and press Enter.

5 On the pop-up menu, select Controller and press Enter.

The Controller Information page displays.

Figure 33. Controller Information page

About Controller Policies

The following policies affect all units and drives on a controller and can be adjusted as appropriate for your equipment. Controller policies are shown at the bottom of the Controller Settings page in 3DM 2 (Figure 34) and on the Policy Control screen in 3BM (Figure 35).

- **Auto Rebuild.** Determines whether the Auto Rebuild policy is enabled or disabled. When disabled, degraded units can only be rebuilt with designated spares. When enabled, the controller firmware will automatically attempt to rebuild a degraded unit if there is no spare, using either an available drive or a failed drive.

- **Auto-Carving.** Determines whether the auto-carving policy is enabled or disabled. When it is enabled, when a new unit is created, any unit larger than a specified size (known as the *carve size*) is broken into multiple volumes that can be addressed by the operating system as separate volumes. The default carve size is 2 TB.

This auto-carving feature is sometimes referred to as multi-LUN, where each volume that is created is referred to as a “LUN.”
• **Carve Size.** (Referred to as Carving Factor in 3BM) Sets the size for dividing up units into volumes when Auto-Carving is enabled and a unit is created. This setting can be between 1024 GB and 32768 GB. Changing this setting has no effect on existing units.

• **Staggered spin-up.** Spin-up allows drives to be powered-up into the Standby power management state to minimize in-rush current at power-up and to allow the controller to sequence the spin-up of drives. Compatible drives are sent a spin up command based on the settings specified with the policies Number of drives per spin-up and Delay between spin-up settings. These policies can only be set using 3BM or the CLI.

 Note: This policy does not apply to drives attached to an expander.

 • **Number of drives per spin-up.** Number of drives that will spin up at the same time when the controller is powered up, if staggered spin-up is enabled. From 1 to x, depending on the number of ports on the controller.

 • **Delay between spin-up.** The delay time (in seconds) between drive groups that spin up at one time on this particular controller, if staggered spin-up is enabled.

 • **Delay before spin-up.** (3BM only) The delay time (in seconds) before the first set of drives on this particular controller will start to spin-up.

 It is possible to enable or disable automatic detection of drives on the controller’s ports for staggered spinup during hot swapping of drives. This feature is only available in the CLI using the autodetect=on|off command. For more information, see /cx set autodetect=on|off disk=<p:-p>|all

• **Export unconfigured disks (JBOD).** This setting is not applicable for 9750 controllers.

• **Staggered method.** Indicates whether the type of staggered spin-up is ATA-6 or SATA OOB (Out Of Band). By default, when Staggered Spin-up is enabled, the OOB scheme is used. If your drives support the SATA ATA-6 method, select that method in 3BM. There is no electronic method for the controller to know if a drive supports this method, so it must be set manually. For staggering to work properly, the drives must support the selected method. This policy does not apply to drives that are attached to an expander. This policy can only be set and only shows in 3BM.

• **Auto-Verify Preferred Date and Time.** Sets the default date and time for auto-verify to run, when the Verify Schedule follows the weekly "Basic" schedule and Auto-Verify is enabled for specific units. Note that in 3DM 2, the Basic and Advanced Auto Verify schedule is set on the Schedule page. Enabling or Disabling Auto Verify is a Unit Policy and is
set on the **Create Disk Array** screen in 3BM and the **Controller Settings** page in 3DM 2.

Some additional policies can be set at the unit level. For more information, see “Setting Unit Policies” on page 107.

Viewing Controller Policies

You can view the current state of controller policies in 3DM, in the **Other Controller Settings** section at the bottom of the Controller Settings page (See Figure 34). Only the Auto Rebuild, Auto-Carving, and Carve Size policies can be changed on this page. The other policies can be changed in 3BM or through the CLI. For a summary of the initial default settings, see Table 5, “Default Settings for Policies and Background Tasks,” on page 30.

To view controller policies in 3DM 2

- Choose **Management > Controller Settings** from the menu bar.

 The policies that appear under Other Controller Settings vary, depending on the controller model you are using.

Figure 34. 3DM 2 Controller Settings Page
To view controller policies in 3BM

You can also view and change these controller policies in 3BM, as shown in Figure 35.

1. On the main 3BM screen, **Tab** to **Settings** and press **Enter**.
2. On the pop-up menu, select **Controller Policies** and press **Enter**.

The Policy Control screen displays.

Figure 35. 3BM Policy Control Screen

Setting the Auto Rebuild Policy

The Auto Rebuild policy determines how the controller firmware will attempt to rebuild degraded units.

When Auto Rebuild is disabled, only spares will be automatically used to rebuild degraded units. When Auto Rebuild is enabled, the firmware will select drives to use for automatically rebuilding a degraded unit using the following priority order:

- Smallest usable spare.
- Smallest usable unconfigured (available) drive.
- Smallest usable failed drive.

Enabling Auto Rebuild allows you to add a drive to the controller and have it be available for a rebuild, without having to specify it as a spare.

With Auto Rebuild enabled, if you accidentally disconnect a drive (causing the controller to see it as a failed drive) and then reconnect it, the controller will automatically try to use it again.

You can enable or disable the Auto-Rebuild policy through 3DM or 3BM.
To enable Auto Rebuild through 3DM 2

1. Choose Management > Controller Settings from the menu bar in 3DM 2.

2. In the Other Controller Settings section at the bottom of the screen, select the Enabled option for Auto Rebuild.

 The page refreshes, and a message at the top confirms the change you have made.

To enable Auto-Rebuild through 3BM

1. On the main 3BM screen, Tab to Settings and press Enter.

2. On the pop-up menu, select Controller Policies and press Enter.

3. On the Policy Settings page, Tab to the Auto-Rebuild field, press Enter to display the options, select Enable and press Enter again to select it.

4. Tab to OK and press Enter to select it.

 The policy is enabled immediately.

Using Auto-Carving for Multi LUN Support

Auto-carving is useful for creating multiple volumes out of large arrays at the hardware level. Then, when you boot to the operating system, each volume appears as a different disk drive, simplifying the partitioning required at the operating system level.

A second use of auto-carving is to gain use of the full capacity of units greater than 2 TB in older operating systems. This is because Windows 2003 (32-bit and 64-bit without SP1), and Windows XP (32-bit), do not currently recognize unit capacity in excess of 2 TB. For more information see, search the LSI Knowledge Base for keyword 13431 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp

When the Auto-Carving policy is on, any new unit larger than a specified size (known as the carve size) will be created as multiple volumes that can be addressed by the operating system as separate volumes. These chunks are sometimes known as multiple LUNs (logical units). However, throughout the 3ware documentation, they are referred to as volumes.

For example, using the default carve size of 2 TB, if the unit is 2.5 TB then it will contain two volumes, with the first volume containing 2TB and the second volume containing 0.5 TB. If the unit is 5.0 TB then it will contain 3 volumes, with the first two volumes containing 2 TB each and the last volume containing 1 TB. (Note: If a specific Boot Volume was also specified in 3BM or CLI, the first volume will be the size specified for the Boot Volume, and
then the carve size will be applied to the remainder of the unit. For more information, see “Boot volume size” on page 93.)

Each volume can be treated as an individual disk with its own file system. The default carve size is 2 TB; you can change this to a setting in the range of 1 TB to 32 TB (1024 GB to 32768 GB). 3ware firmware supports a maximum of 32 volumes per controller, up to a total of 32TB.

If you are migrating a unit to a size that is larger than the carve size and auto-carving is on, multiple volumes will be created.

Note: Carving a unit into multiple volumes can have an impact on performance.

Note: Operating systems without the 2TB limitation include Linux 2.6, Windows XP (64bit), Windows 2003 (32-bit and 64-bit with SP1 or newer), Windows 2008 (32-bit and 64-bit) and Windows Vista.

Even though the Linux 2.6 kernel supports partitions larger than 2 TB, the installers for SUSE and Redhat do not. Turn auto-carving on to prevent the installation from failing.

You must turn on the Auto-Carving policy before creating the unit. Units created with this policy turned off will not be affected by a change to the policy. If the policy is turned off later, units that have been carved into volumes will retain their individual volumes; existing data is not affected.

To use auto-carving

1. Enable the auto-carving feature. You can do so using 3DM or 3BM.
 In 3DM 2, enable Auto-Carving at the bottom of the Management > Controller Settings page.
 In 3BM, you enable Auto-Carving on the Settings > Controller Policies page.
Create a new unit or migrate an existing unit to include the drives you want to use.

If the combined capacity of the drives exceeds the carve size, a number of volumes will be created.

Verify the creation of the volumes.

In 3DM 2, the number of volumes is shown on the Unit Details page.

Verify that the volumes appear in the operating system. They will appear as additional drives.

Notes:

- If you are configuring a unit for primary storage and it will be greater than 2 TB, be sure to enable the auto-carve policy before creating the unit.
- When volumes have been created through auto-carving, they cannot be deleted except by deleting the unit.
- If you create a bootable unit that has multiple volumes, the first volume can be used as the boot device.
- Changing the auto-carve policy does not affect existing units.
Setting the Size of Volumes Created with Auto-Carving

You can use auto-carving to divide units larger than 1 TB into multiple volumes. You control the size of the volumes to be created by setting the carve size (referred to as *carving factor* in 3BM). The carve size can be between 1 TB (1024 GB) and 32 TB (32768 GB); the default is 2 TB.

When you change this policy, it applies to units you create in the future. Existing units will not be affected.

To set the carve size in 3DM 2

1. Choose **Management > Controller Settings** from the menu bar in 3DM 2.

2. In the Other Controller Settings section at the bottom of the screen, in the **Carve Size** field, enter the size you want (between 1024 GB and 32768 GB) to use and click **Submit**.

 The page refreshes, and a message at the top confirms the change you have made.

To set the carve size (carving factor) in 3BM

1. On the main 3BM screen, **Tab** to **Settings** and press **Enter**.

2. On the pop-up menu, select **Controller Policies** and press **Enter**.

3. On the Policy Settings page, **Tab** to the **Carving Factor** field, press **Enter** to display the text entry box, enter the size you want (between 1024 GB and 32768 GB) and press **Enter** again to accept it.

4. **Tab** to **OK** and press **Enter** to select it.

 The policy is enabled immediately.

Enabling and Setting Up Staggered Spin-up

You can set the number of SAS and SATA drives that will spin up at the same time and the delay time between drive group spinups. This does not apply to SAS or SATA drives that are attached to an expander.

Three policy settings let you set the number of drives that will spin up at the same time and set the delay between drive groups that spin up at one time. Not all SATA drives support staggered spinup. If you enable staggered spinup and have drives that do not support it, the setting will be ignored. You can change these settings in 3BM or using the CLI.
To enable or disable spinup and set the delay between spinups

1. At the main 3BM screen, **Tab** to **Policy** and press **Enter**.
2. On the Policy **Control** screen, **Tab** through these fields, making the choices you want to use:
 - **Staggered Spinup**: Choose enabled or disabled.
 - **Number of Drives Per Spinup**: Select the number of drives, depending on the number of ports on the controller.
 - **Delay between spinup**: Select the number of seconds—from 1 to 6.
3. **Tab** to the **OK** button and press **Enter**.
 You will notice a short delay as 3BM makes the policy changes.

Note: It is possible to enable or disable automatic detection of drives on the controller’s ports for staggered spinup during hot swapping of drives. This feature is only available in the CLI using the **autodetect=on|off** command. For more information, see `/x set autodetect=on|off disk=<p:-p>|all 3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0.

Viewing Information About a Phy

The 3ware 9750 RAID controller has 8 phy transceivers (phys) that receive and transmit the serial data stream between the controller and drives and other devices in the SAS domain.

Phys are associated with the SAS ports on the controller. Multiple phys can be associated with one SAS port, which is then called a “wide port.” In the 9750, there are two wide ports and each wide port has 4 phys.

You can check the phy properties on the Controller Phy Summary page.

To see information for a phy in 3DM 2

1. Select the controller for which you wish to view phy information from the drop-down list on the menu bar.
2. If you have a direct-attached drive you can access the Controller Phy Summary page from the **Information > Drive Information** page by clicking the phy ID for the drive. Otherwise, navigate to the **Management > Controller Settings** page.

Note: Some hard drives require that the power management jumper (PM2) be set to enable staggered spinup, in order for the SATA OOB option to be used. For more information, search the LSI Knowledge Base for keyword 14889 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.
3 Under **Other Controller Settings** click the # link for **Number of Controller Phys**.

Figure 37. Phy Summary Page

<table>
<thead>
<tr>
<th>Phy</th>
<th>SAS Address</th>
<th>Link Enabled</th>
<th>Link Control</th>
<th>Type</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50005E0000000122</td>
<td>1.5 Gbps</td>
<td>Auto</td>
<td>SATA</td>
<td>VPart 6</td>
</tr>
<tr>
<td>1</td>
<td>50005E0000000122</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>SATA</td>
<td>VPart 17</td>
</tr>
<tr>
<td>2</td>
<td>50005E0000000122</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>SATA</td>
<td>VPart 17</td>
</tr>
<tr>
<td>3</td>
<td>50005E0000000122</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>SATA</td>
<td>VPart 17</td>
</tr>
<tr>
<td>4</td>
<td>50005E0000000126</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>Enclosure</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>50005E0000000126</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>Enclosure</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>50005E0000000126</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>Enclosure</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>50005E0000000126</td>
<td>3.0 Gbps</td>
<td>Auto</td>
<td>Enclosure</td>
<td>--</td>
</tr>
</tbody>
</table>

For details about the columns on this page, see “Controller Phy Summary page” on page 210.

To see information for a phy in 3BM

1. On the main 3BM screen, **Tab** to **Information** and press **Enter**.
2. On the pop-up menu, select **Phys** and press **Enter**.
3. On the Controller Phy Information page, use the arrow keys to select the Phy you want to see details about. The information displays on the right.

Figure 38. Controller Phy Information page
Changing the Phy Link Speed

You can change the link speed between the controller and an expander or between the controller and a drive that is directly connected to the controller. Typically, the phy link speed is set to Auto. If desired for compatibility, troubleshooting or performance analysis, you can specify a specific link speed (1.5, 3.0, or 6.0 Gbps).

To change the phy link speed in 3DM 2

1. On the Controller Phy Summary page, identify the phy device for which you wish to change the link speed. Direct-attached drives are identified by their VPort ID.

2. In the Link Control drop-down menu, select the desired speed: 6 Gbps, 3 Gbps, 1.5 Gbps, or Auto.

The link speed is now reset.

For details about the information displayed on this screen, see “Controller Phy Summary page” on page 210.

Figure 39. Controller Phy Summary page
To change the phy link speed in 3BM

1. On the main 3BM screen, Tab to Settings and press Enter.
3. On the Controller Phy Policies page, use the arrow keys to select the Phy for which you want to set the link speed.
4. Press Enter to display a popup of the possible settings, select the one you want, and press Enter again.

Figure 40. Controller Phy Policies page
Configuring Units

This section includes information and procedures on configuring units attached to your 3ware RAID controller. It is organized into the following topics:

- Configuring a New Unit
- Creating a Hot Spare
- Naming a Unit
- Setting Unit Policies
- Changing An Existing Configuration by Migrating (RAID Level Migration or Online Capacity Expansion)
- Deleting a Unit
- Removing a Unit
- Moving a Unit from One Controller to Another
- Adding a Drive
- Removing a Drive
- Rescanning the Controller

Configuring a New Unit

When you configure a new unit, you specify some details related to the type of RAID configuration that you want, and others that enable or disable features.

This section first provides an overview of the different settings you can specify during configuration and then provides step-by-step instructions for creating a unit through both 3DM and 3BM.
Configuration Options When Creating a Unit

This section provides an overview of the choices you have when configuring a new unit. For step-by-step instructions, see “Creating a Unit through 3DM 2” on page 95 and “Creating a Unit through 3BM” on page 97.

When you configure a new unit, you specify the following:

- Drives to be included in the unit
- Name of the unit (optional)
- Type of configuration (RAID Level)
- Stripe size, if appropriate for the RAID level
- Boot volume size (optional; can only be specified in 3BM or CLI)
- Initialization Method (3BM only)
- Unit policies that affect how the unit will be handled

You can make some types of changes to the RAID configuration later, and you can change the unit name and the unit policies. For details, see “Changing An Existing Configuration by Migrating” on page 123 and “Setting Unit Policies” on page 107.

Note: If you will install the operating system on and boot from a unit managed through the new 3ware RAID controller, see Chapter 2, “First-Time RAID Configuration Using 3BM.”

Drives to be included in the unit

You may include from one to thirty-two drives in the unit, depending on the number of drives available and the model of the controller you have. (For information about how many drives to select for a given RAID level, see “Determining What RAID Level to Use” on page 11.)

When creating units on the 9750 controller, you cannot mix SAS and SATA drives in the same unit.

Available drives are those that are not currently part of a unit. If you want to use drives that are currently part of a different unit, you must first delete that unit to make the drives available. (For details, see “Deleting a Unit” on page 128.) If drives are listed under “Incomplete Drives and Others,” they must be deleted before they can be used.

If you want to add drives to a unit, see “Adding a Drive” on page 135.
Name of the unit (optional)
Units can be given names for easier identification. These names will be visible in 3DM, CLI, and 3BM.

Type of configuration (RAID Level)
Available configuration types include RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, and Single Disk. For information about the different RAID levels, see “Understanding RAID Concepts and Levels” on page 5

Warning: Creating a unit writes the DCB and makes any earlier data on the drives inaccessible.

Stripe size, if appropriate for the RAID level
Striping size is not applicable for RAID 1, because it is a mirrored array without striping.

Using the default stripe size of 256KB usually gives you the best performance for mixed I/Os. If your application has some specific I/O pattern (purely sequential or purely random), you might want to experiment with a smaller or larger stripe size.

Boot volume size
When you create a unit through 3BM or CLI, you can create a special volume to function as the boot volume. This is useful if you will be installing an operating system onto the unit, and want it to be installed in one volume and have a separate volume for data.

This is an optional feature. You do not have to create a boot volume if you plan to install the operating system on the unit.

If you are creating a very large unit and have enabled the Auto-Carving policy, the boot volume will be created in addition to any volumes created through auto-carving. For more information about auto-carving, see “Using Auto-Carving for Multi LUN Support” on page 83.

This feature can only be specified in 3BM and CLI.

Initialization Method
In 3BM, you can choose to do a foreground (default) or background initialization of the unit. 3DM and CLI can only use background initialization when creating a unit.
A foreground initialization will take place before the system is booted. It can take up to several hours, depending on the size of the unit.

A background initialization allows you to have immediate use of the unit, but will take longer and slows down performance of the unit until it completes.

If your unit starts a foreground initialization and you want to use it immediately, you can press Esc and the unit will switch to using background initialization.

Unit policies

Several unit policies are set when you create a new unit:

- Write Cache (enabled, by default)
- Read Cache (Intelligent, by default)
- Drive Queuing (enabled, by default)
- Ignore ECC (Continue on Source Error When Rebuilding (disabled, by default))
- StorSave Profile (Balanced, by default)
- Auto Verify (enabled, by default)
- Rapid RAID Recovery (enabled, by default)

The particular policies that you can adjust when you create the unit vary, depending on which program you are using: 3DM, 3BM, or the CLI.

You can change all of these policies after the unit has been created, with one exception. If Rapid RAID Recovery is disabled, it cannot be enabled later.

For a summary of what these policies do, see the discussion under “Setting Unit Policies” on page 107. For how to adjust each one, see the procedures later in this chapter.
Creating a Unit through 3DM 2

In 3DM 2, creating a unit starts from the Management > Maintenance page (Figure 41).

Figure 41. 3DM 2 Maintenance Page

To create a unit

1. In 3DM 2, choose Management > Maintenance.

2. In the Available Drives list, select the drives you want to include in the unit by marking the checkbox in front of the VPort for each one. All drives in a unit must be of the same type—either SAS or SATA.

 Although the best practice is to create a unit from drives in the same enclosure, you can create a unit with drives from different enclosures.

3. Click Create Unit.

 A window similar to the one below shows the drives you selected, and lets you specify configuration settings.
Figure 42. Configuring a Unit in 3DM 2

4 In the Type field, select the RAID configuration you want.

5 If stripe size applies to the RAID type you select, select a Stripe Size. (Stripe size does not apply to RAID 1.)

6 Optional: In the Name box, enter a name for the unit (up to 21 characters, including dashes and underscores).

7 If you have 12 drives attached to the controller and selected RAID 50 as the configuration in step 3, select whether you want 3, 4, or 6 Drives Per Subunit, as shown here.

Figure 43. Configuring a RAID 50 with 12 Drives

8 Make changes to the unit policies, as desired. You can enable or disable the Write Cache, Auto Verify, and Overwrite ECC. You can also set the StorSave policy, the Rapid RAID Recovery policy, and the Read Cache policy.

For details about these settings, see “Setting Unit Policies” on page 107.
9 Click **OK**.

The new unit appears in the Unit Maintenance list at the top of the page and the operating system is notified of the new unit.

If you have auto-carving enabled and the size of your unit exceeds the carve size, you may see multiple unit volumes in your operating system. For details, see “Using Auto-Carving for Multi LUN Support” on page 83.

In Linux, a device node will now be associated with each unit created. In Windows, the device manager will reflect the changes under the disk drives icon.

10 Partition, format, and mount the unit. The required steps will vary depending on the operating system. For details, see “Partitioning, Formatting, and Mounting Units” on page 102.

Note: For RAID 5 and RAID 6 units with 5 or more disks, and RAID 50 units with subunits of 5 drives or more, initialization (synchronization) of the unit begins immediately.

The unit can be used while it is initializing and is fault-tolerant.

Creating a Unit through 3BM

In 3BM, configuration tasks start from the main 3ware BIOS Manager screen shown in Figure 44.

Figure 44. 3BM Main Display

![3BM Main Display](image)

To create a unit through 3BM

1 At the main 3BM screen, select the drives to be included by highlighting each one and pressing **Enter** or **Space** to select it.

When you select a drive, an asterisk appears next to it in the left most column (see Figure 45).
2 After all drives for the unit are selected, **Tab** to the **Create Unit** button and press **Enter**.

Tip: You can also press **Alt-C** to choose Create Unit.

3 On the **Create Disk Array** screen, make sure that the proper drives are listed.

Figure 46. Create Disk Array screen

4 (Optional) Press **Enter** and type a name for the unit; then press **Enter** again to set the name.
5 **Tab** to the **RAID Configuration** field and press **Enter** to display a list of available configurations for the number of drives you selected.

Figure 47. Configuration Choices for Four Drives

6 Use the **arrow keys** to select the configuration you want and press **Enter**.

7 **Tab** to the field **Stripe Size** and select the desired striping size (16, 64, or 256 KB).

Figure 48. Stripe Sizes for a RAID 5

8 (Optional) **Tab** through the policy fields and make any appropriate changes to the default settings for:
 - **Write Cache Setting**
 - **Read Cache Setting**
 - **StorSave Profile**
 - **Auto Verify**
 - **Rapid RAID Recovery**

For details about these settings, see “Configuration Options When Creating a Unit” on page 92.

9 (Optional) **Tab** to the Advanced Options screen and make any appropriate changes to the default settings for:
 - **Boot Volume Size (in gigabytes)**
 - **Drive Queuing Mode**
 - **Continue on Error During Rebuild**
 - **Initialization method**

For details about these settings, see “Configuration Options When Creating a Unit” on page 92.
Figure 49. Create Disk Array Advanced Options screen

10 From the Advanced Options screen, **Tab** to the **OK** button and press **Enter** to return to the Create Disk Array screen.

11 **Tab** to the **OK** button and press **Enter** to confirm creation of the unit.

12 If the volume summary screen appears, review the information and press any key to continue.

Multiple volumes will be created if you entered a Boot Volume Size of greater than zero (0), or if auto-carving is enabled and the combined size of the drives in your unit is large enough to divide it into multiple volumes.

If you are not satisfied with how the volumes will be split up in the unit, delete the unit from the main 3BM screen and recreate it using a different Boot Volume Size. If desired, you can change the auto-carving policy or the carve size on the Policies page. For more information, see “Using Auto-Carving for Multi LUN Support” on page 83.

You are returned to the main 3BM screen.

Note: The unit is not actually created and no data is overwritten until you have finished making all your changes and press **F8**.
13 When you are finished making configuration changes, press **F8** to save the changes and exit 3BM.

A warning message tells you that all existing data on the drives will be deleted, and asks you to confirm that you want to proceed.

Figure 50. Confirmation Message when Saving and Exiting

If you made changes to units on more than one controller, the details about changes about to be made may extend beyond one screen. In this case, you use the **PgUp** and **PgDn** keys to bring more information into view.

14 Type **Y** to continue, delete any existing data on the drives, and create the unit.

15 Partition and format the units, as described under “Partitioning, Formatting, and Mounting Units” on page 102.

Note: For RAID 5 and RAID 6 units with 5 or more disks, and RAID 50 units with a subunit of 5 or more disks, initialization of the unit begins immediately. You can postpone initialization if you want to begin using the units right away, however initialization from the BIOS is faster than it is under the operating system, so it will be a longer period of time until the unit has optimal performance. For more information, see "About Initialization" on page 152.

Ordering Units in 3BM

If you configure multiple units in 3BM and you want to install the OS on one of them so that you can boot from that unit, that unit must be the first unit.

You can change the order of the units in 3BM.

To change the order of units in 3BM

1 At the main 3BM screen, in the list of exportable units, highlight the unit you want to move.
2 Press the **Page Up** key to move the unit up the list; press the **Page Down** key to move the unit down the list.

Position the unit you want to be bootable at the top of the list of exportable units.

3 When you are finished working in 3BM, press **F8** to save your changes and exit.

Partitioning, Formatting, and Mounting Units

After you create a unit, whether through 3BM or 3DM, it needs to be formatted, partitioned, and mounted by the operating system before it can be used.

The steps vary, depending on whether your operating system is Windows, or Linux.

To partition, format, and mount under Windows

1 Boot the system and log in as a system administrator.

2 Partition and format the new arrays or disks using the **Administrative Tools** from the **Start** menu:
 a Choose **Computer Management** from the **Administrative Tools** menu.
 b Select **Storage**.
 c Select **Disk Management**.

3 Follow the steps that appear on-screen to write a signature to the drive.

4 Right-click on the drive and select **Create Volume**.

 Note: If you plan on migrating your unit to a larger array or another RAID type in the future remember to select the dynamic disk option. Only dynamic disks can be resized into larger partitions. Older Windows systems cannot convert basic disks into dynamic disks after the file system has been created.

5 Follow the steps that appear on-screen to create a volume and to assign a drive letter.

The volume is automatically mounted after formatting completes.
To partition, format, and mount under Linux

1. Boot the system and log in as root.
2. Open a terminal window.
3. Partition the unit:

   ```
   fdisk /dev/sda
   If the unit is over 2 TB, use:
   parted /dev/sda
   (parted) mklabel
   New disk label type? gpt
   (parted) p
   Disk geometry for /dev/sda: 0kB - 1074GB
   Disk label type: gpt
   Number Start End Size File system Name Flags
   parted /dev/sda
   (parted) mkpart
   Partition type? [primary]?
   File system type? [ext2]?
   Start? 0
   End? 1074gb
   (parted) p
   Disk geometry for /dev/sda: 0kB - 1074GB
   Disk label type: gpt
   Number Start End Size File system Name Flags
   parted /dev/sda
   ```

4. Create or make the file system:

   ```
   mkfs /dev/sda1
   Use of the -j option to turn on journaling is recommended for large partitions.
   For example:
   mkfs -j /dev/sda1
   ```
If the partition is over 2TB, use `parted` to also make the file system:

```
parted /dev/sdal

(parted) mkfs
Partition number? 1
File system? [ext2]?
writing per-group metadata (begins)...0% to 100% is displayed)

(parted) quit (when completed)
```

5 Mount the volume:

```
mount /dev/sdal /mnt
```

Creating a Hot Spare

You can designate an available drive as a hot spare. If a redundant unit degrades and a hot spare the size of the degraded disk (or larger) is available, the hot spare will automatically replace the failed drive in the unit without user intervention.

Note: When a hot spare replaces a failed drive, an event notification is generated and appears in the list of alarms in 3DM 2. You can also have 3DM 2 send you an email about this. See “Managing E-mail Event Notification” on page 72.

It is a good idea to create a hot spare after you create a redundant unit.

In order to replace a failed drive, a hot spare must have the same or larger storage capacity than the drive it is replacing, and must be of the same type (SAS or SATA).

The Auto Rebuild policy allows automatic rebuilding to occur with available drives that are not designated as spares. For more information, see “Setting the Auto Rebuild Policy” on page 82.
Note: 3ware’s 9750 RAID controllers use drive coercion so that drives from differing manufacturers and with slightly different capacities are more likely to be able to be used as spares for each other. Drive coercion slightly decreases the usable capacity of a drive that is used in redundant units.

The capacity used for each drive is rounded down to the nearest GB for drives under 45 GB (45,000,000,000 bytes), and rounded down to the nearest 5 GBytes for drives over 45 GB. For example, a 44.3 GB drive will be rounded down to 44 GBytes, and a 123 GB drive will be rounded down to 120 GBytes.

If you have 120 GB drives from different manufacturers, chances are that the capacity varies slightly. For example, one drive might be 122 GB, and the other 123 GB, even though both are sold and marketed as “120 GB drives.” 3ware drive coercion uses the same capacity for both of these drives so that one could replace the other.

Specifying a Hot Spare through 3DM

If you need to add a drive to be used as the hot spare, follow the instructions under “Adding a Drive” on page 135.

To specify a hot spare after the system is booted

1. In 3DM 2, choose Management > Maintenance.
2. In the Available Drives list, select the drive you want as a hot spare by marking the checkbox in front of its Port number.
3. Click Set Spares.
 You will see the status change to OK-SPARE.

Specifying a Hot Spare through 3BM

1. On the main 3BM screen, in the list of Available Drives, highlight the drive you want to use.
2. Type s to specify that the selected drive will be the hot spare.
 You’ll see the words “Hot Spare” appear next to the drive in the Available Drives list.
Figure 51. Hot Spare Indicated

If a hot spare is already enabled, you can disable it by pressing s again.

3 If you are finished making changes in 3BM, press F8 to save the changes and exit.

Note: If the drive you designated as a spare is not large enough to replace a failed drive in a fault-tolerant unit, or if there is not a fault-tolerant unit for the spare to support, 3BM will notify you.

Naming a Unit

Units can be given unique names to more easily identify them. A unit can be assigned a name when it is created. It can also be named or renamed at a later time.

To name or rename a unit through 3DM 2

1 Make sure the appropriate controller is selected in the drop-down list at the right of the menu bar.

2 Choose **Management > Controller Settings** from the menu bar in 3DM 2.

3 In the **Unit Names** section of the Controller Settings page, locate the unit for which you want to change the name.

4 In the text box, enter or type over the name shown. A name can be up to 21 characters, and can include dashes and underscores.

5 Click the **Save Names** button.

Note: If you want to cancel your change before saving it, click the **Reset Names** button.
To name or rename a unit through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter. An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Maintain Unit button and press Enter.

3. On the pop-up menu, select Configure and press Enter.

 On the Configure Disk Array screen, the Array Name field is already selected.

4. Press Enter to open a text box.

5. Type a name for the unit and press Enter.

6. Tab to the OK button and press Enter to select it. You return to the main 3BM screen.

7. When you are finished making changes, press F8 to save them and exit 3BM.

Setting Unit Policies

The following polices are set when you create a unit, and can be adjusted later through settings on the Management > Controller Settings pages of 3DM 2 and the Policy Control screen in 3BM. Details about adjusting each policy are described on the following pages.

- **Write Cache.** Determines whether write cache is enabled for the unit. When the write cache is enabled, data is stored locally on the controller before it is written to disk, allowing the computer to continue with its next task. This provides the most efficient access times for your computer system. When disabled, the computer will wait for the controller to write all the data to disk before going on to its next task. For details, see “Enabling and Disabling the Unit Write Cache” on page 109.

 This feature interacts with functionality of the BBU, if you have one, and with the unit’s StorSave profile. For details, see “Enabling and Disabling the Unit Write Cache” on page 109.

- **Read Cache.** Determines whether Intelligent or Basic Read Cache is enabled, or whether Read Cache is disabled. Setting the appropriate type of Read Cache can improve performance for different types of applications. For details, see “Working with Read Cache Settings” on page 111.

- **Auto Verify.** Determines whether the unit will be automatically verified at a time determined by the Verify Schedule. Enabling this feature helps insure that the unit is verified on a regular basis. For details, see “Enabling or Disabling Auto Verify for a Unit” on page 115.
• **Override ECC (Continue on Source Error When Rebuilding).** Determines whether ECC errors are ignored when they are encountered during a rebuild. (ECC errors are an indication of errors that have occurred on a particular drive since it was last read.) When not enabled, a rebuild will abort upon encountering an ECC error and the unit will be set to Degraded. For details, see “Setting Overwrite ECC (Continue on Source Error When Rebuilding)” on page 116.

• **Queuing.** Determines whether command queuing is enabled for the unit. When enabled for drives that support it, this policy can improve performance. For details, see “Enabling and Disabling Queuing for a Unit” on page 117.

• **StorSave Profile.** Determines what StorSave profile is used for the unit. Three profiles are available: Protection, Balanced, and Performance. For details, see “Setting the StorSave Profile for a Unit” on page 118.

• **Rapid RAID Recovery.** Determines which Rapid RAID Recovery option to use, **All, Rebuild** or **Disable.** **All** will apply the policy to both rebuilds and unclean shutdowns. **Rebuild** will apply only to rebuilds. You can switch between **All** and **Rebuild** settings, but, once Rapid RAID Recovery is disabled for the unit, it cannot be re-enabled. For details, see “Rapid RAID Recovery” on page 121.
Figure 52. Unit Policies on Controller Settings Page in 3DM 2

Enabling and Disabling the Unit Write Cache

Write cache is used to store data locally in memory on the controller before it is written to the disk drive media, allowing the computer to continue with its next task. This improves performance. However, there may be instances when you want the computer to wait for the drive to write all the data to disk before going on to its next task. In this case, you must disable the write cache.

Note: If write cache is enabled, in the event of a power failure, the data in the controller cache will be lost if you do not have a Battery Backup Unit (BBU). To avoid a sudden power failure if you do not have a BBU, it is advisable to have an Uninterruptible Power Supply (UPS).

Write cache can be turned on or off for individual units in 3DM, CLI, and 3BM without changing the configuration or losing data from the drives.
If you have a BBU (Battery Backup Unit) installed on the controller, the battery preserves the contents of the controller cache memory for a limited period of time (up to 72 hours) in the event of a system power loss. When a BBU is installed, if the battery is not “Ready,” write cache is disabled and cannot be enabled.

The unit's StorSave profile can also determine whether the write cache can be enabled or disabled. A warning message will be given if the change is not permitted due to the StorSave setting and the state of the unit.

Note: If the Write Cache checkbox is disabled (not selectable), check to see if the unit has degraded or if the BBU is not ready. If a unit has a StorSave policy of “Protect” and the unit degrades, the policy prevents write cache from being re-enabled until the unit has been rebuilt or until the BBU is ready to use.

To enable or disable unit write cache through 3DM 2

1. Choose **Management > Controller Settings** from the menu bar in 3DM 2.
2. In the **Unit Policies** section of the Controller Settings page, check the Write Cache box to enable it for the designated unit.

![Figure 53. Write Cache Policy in 3DM 2](image)

The page refreshes, and a message at the top confirms the change you have made.

If your system has no BBU, a message will caution you about enabling write cache.

To enable or disable unit write cache through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.

 An asterisk appears in the left-most column to indicate that it is selected.
2. **Tab** to the **Maintain Unit** button and press Enter.
3. On the pop-up menu, select **Configure** and press Enter.
4. In the Configure Disk Array screen, **Tab** to the field **Write Cache Settings**.
Setting Unit Policies

Figure 54. Unit Write Cache State in 3BM

The current setting—Enabled or Disabled—is shown. (The initial default setting is for write cache to be enabled.)

5 Press Enter to display the choices, use the arrow keys to select the setting you want, and press Enter again to choose it.

6 Tab to the OK button and press Enter to select it.

You return to the main 3BM screen.

7 When you are finished making changes, press F8 to save them and exit 3BM.

Working with Read Cache Settings

The Read Cache unit policy lets you enable either Basic Read Caching or Intelligent Read Caching. You can also disable the Read Cache unit policy, if preferred.

By default, Read Cache is set to Intelligent. You can change it to Basic or to Disabled, as appropriate.

About the Read Cache Basic and Intelligent Modes

Basic Mode is used to store read cache data locally on the controller that has recently been written to media and is likely to be frequently accessed. This improves read access times for applications such as a database that can take advantage of storage caching. The read cache may be disabled without reducing performance for applications that are write intensive, or that rarely read back data recently written.

Intelligent Mode enables the Intelligent Read Prefetch (IRP) feature.

The Intelligent Read Prefetch feature includes a typical read-ahead caching method which is used to proactively retrieve data from media and store it
locally on the controller with the anticipation that it may be requested by the host. For example, the host may read blocks 1, 2, and 3. With the read-ahead caching included in IRP, the controller will also retrieve and hold in its cache blocks 4, 5, and 6 in anticipation of getting those command requests from the host. By loading a larger set of data into the cache, chances are improved that another request can be filled by data that is already in the cache. This can be helpful with applications that are sequential in nature, such as video on demand, video surveillance playback, and restoring from a disk-to-disk backup. Performance benefits of read-ahead are especially pronounced when the host queue depth is low. In addition, this read-ahead caching also improves sequential read performance when the unit is degraded.

The Intelligent Read Prefetch (IRP) feature also includes an intelligent and adaptive stream management layer to improve performance at higher queue depth in multiple read only or mixed read/write stream environments. The performance improvements should be seen for most RAID types regardless of the unit’s operational state (normal, degraded, and so forth).

Note that if Intelligent Mode is enabled, the features in Basic mode are also enabled.
When to Use Each Read Cache Setting
The following table provides some recommendations for when to use each Read Cache setting.

Table 8: Recommendations for Using Each Read Cache Setting

<table>
<thead>
<tr>
<th>Use this Read Cache Setting</th>
<th>For this reason</th>
<th>Example applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligent</td>
<td>Sequential applications, with a low host command queue depth</td>
<td>Video on Demand, Video Surveillance Playback, Disk-to-Disk Backup Restores, File Server</td>
</tr>
<tr>
<td>Basic</td>
<td>Frequent access to recently written data</td>
<td>Database</td>
</tr>
<tr>
<td>Disabled</td>
<td>Applications that produce a high queue depth or perform their own read-ahead can generate enough I/O to negate the benefits of controller read caching or read-ahead. This is especially true for applications that produce a lot of random I/O.</td>
<td>Online Transaction Processing (OLTP)</td>
</tr>
</tbody>
</table>

Changing the Read Cache Policy for Existing Units
The Read Cache policy is initially set when you create a unit. You can change it later from either 3DM 2 or 3BM.

To change the Read Cache unit policy in 3DM 2
1. Choose Management > Controller Settings from the menu bar in 3DM 2.
2. In the Unit Policies section of the Controller Settings page, select the desired Read Cache setting, as shown in Figure 55.
 - **Intelligent**: Enables both the Basic and Intelligent Read Prefetch (IRP) caching features.
 - **Basic**: Enables the Basic read caching mode for the unit.
 - **Disabled**: Disables the Read Cache policy for the unit.
After you change the selection, the page refreshes, and a message at the top confirms the change you have made.

To change the Read Cache unit policy In 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.
 An asterisk appears, indicating that the RAID unit is selected.

2. **Tab** to the **Maintain Unit** button and press **Enter**.

3. On the pop-up menu, select **Configure** and press **Enter**.

4. In the Configure Disk Array screen, **Tab** to the field **Read Cache Setting**.
 The current setting—Intelligent, Basic, or Disabled—is shown.
5 Press **Enter** to display the choices, use the arrow keys to select the setting you want (Figure 56), and press **Enter** again to choose it.

Figure 56. Read Cache Setting on the Configure screen

6 Tab to the **OK** button and press **Enter** to select it.

You return to the main 3BM screen.

7 When you are finished making changes, press **F8** to save them and exit 3BM.

Enabling or Disabling Auto Verify for a Unit

Auto Verify can help insure that a unit is verified on a regular basis. This is important, as it can provide early warning of unstable units and possible data loss due to a failing drive.

Auto Verify is set on a per-unit basis, and works in conjunction with the Verify Schedule, which is set on a controller-wide basis. By default, the Verify Schedule is set to “Basic,” which specifies a weekly day and time for verification to occur when Auto Verify is enabled.

The steps below describe how to enable or disable Auto Verify for an existing unit. For more detailed information, see “Using Auto Verification” on page 157. For how to view or change the Verify Schedule, see “Selecting Advanced or Basic Verify Schedules” on page 172.

Note: If Auto Verify is disabled for a unit, then verification will only run if you start it manually or in the event of an unclean shutdown.

You can start a verify manually at any time. See “Starting a Verify Manually” on page 158.
To enable or disable the Auto Verify policy for an existing unit through 3DM 2

1. Choose Management > Controller Settings from the menu bar.

2. In the Unit Policies section of the Controller Settings page check the Auto Verify box for the appropriate unit. (To disable this policy, uncheck the box.)

 The page refreshes, and a message at the top confirms the change you have made.

To enable or disable the Auto Verify policy for an existing unit through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.

 An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Maintain Unit button and press Enter.

3. On the pop-up menu, select Configure and press Enter.

4. In the Configure Disk Array screen, Tab to the field Auto-Verify.

5. After completing any other changes you wish to make, tab to OK and press Enter.

Setting Overwrite ECC (Continue on Source Error When Rebuilding)

The Overwrite ECC (Continue on Source Error When Rebuilding) policy is available for units which are redundant. (For units which are not redundant, this option is not shown on the screen.) When this policy is set, ECC (Error Correcting Code) errors are ignored when they are encountered during a rebuild. (ECC errors are typically defects that have been detected in the drive since initialization.) When this policy is not set, if a unit is rebuilding, the rebuild will abort when it encounters an ECC error and the unit will be set back to Degraded.

Since enabling this policy could result in the loss of some source data in the event of source errors, the default is to not enable this policy. Select this option only if you want to ensure that a rebuild will complete successfully without manual intervention. If the rebuild fails and Overwrite ECC (Continue on Source Error When Rebuilding) is not selected, then you have the option to start another rebuild manually. After completing a rebuild with this policy enabled, it is recommended that you execute a file system check when the rebuild completes. Under Windows, you can do this by right-clicking on the Drive and choosing Properties; then on the Tools tab, click Check Now. Under Linux use fsck /dev/sdal.
To set the Overwrite ECC policy in 3DM 2

1. Choose Management > Controller Settings from the menu bar in 3DM 2.

2. In the Unit Policies section of the Controller Settings page, check the boxes to select the policies you want to be in effect for each unit.
 The page refreshes, and a message at the top confirms the change you have made.

To set the Continue on Source Error When Rebuilding policy in 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.
 An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Maintain Unit button and press Enter.

3. On the pop-up menu, select Configure and press Enter.

4. In the Configure Disk Array screen, Tab to the field Continue on Source Error When Rebuilding.

5. Press Enter to display the choices, use the arrow keys to select the setting you want (Enabled or Disabled), and press Enter again to choose it.

6. Tab to the OK button and press Enter to select it.
 You return to the main 3BM screen.

7. When you are finished making changes, press F8 to save them and exit 3BM.

Enabling and Disabling Queuing for a Unit

Some drives support command queuing, a feature that can result in increased performance for applications that require a lot of random access of data (usually server-type applications). This is accomplished by causing command reordering to be done on the drive.

In order to make use of command queuing, the feature must be enabled at both the drive and the controller. You can enable support for command queuing on a per-unit basis, as described below.

You can see whether command queuing is supported and enabled for a particular drive in the Drive Details window. For details, see “Drive Details window” on page 208.
To enable or disable queuing for a unit through 3DM 2

1. Choose Management > Controller Settings from the menu bar in 3DM 2.

2. In the Unit Policies section of the Controller Settings page, enable queuing by checking the box under “Queuing” for the designated unit; disable it by unchecking the box.

 The page refreshes, and a message at the top confirms the change that you have made.

To enable or disable queuing for a unit through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter. An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Maintain Unit button and press Enter.

3. On the pop-up menu, select Configure and press Enter.

4. In the Configure Disk Array screen, Tab to the field Drive Queuing Mode.

5. Press Enter to display the choices, use the arrow keys to select the setting you want (Enabled or Disabled), and press Enter again to choose it.

6. Tab to the OK button and press Enter to select it.

 You return to the main 3BM screen.

7. When you are finished making changes, press F8 to save them and exit 3BM.

Setting the StorSave Profile for a Unit

You can set the desired level of data protection versus performance for a unit by selecting the StorSave Profile. Three profiles are provided: Protection (maximum data protection), Performance (maximum performance, less data protection), and Balanced (a middle ground). The default is Balanced.
About StorSave Profile Levels

The three profiles automatically adjust several different factors that affect protection and performance on a per unit basis. These are summarized in the table below and further explained after the table.

Table 9: StorSave Profile Definitions

<table>
<thead>
<tr>
<th></th>
<th>Protection</th>
<th>Balanced (Default)</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Maximum data protection, but slower performance.</td>
<td>More data protection than Performance but less data protection than Protection.</td>
<td>Maximum performance for the unit, but less data protection.</td>
</tr>
<tr>
<td>FUA (Force Unit Access)</td>
<td>Honor FUA (If no BBU is present)</td>
<td>Honor FUA (If no BBU is present)</td>
<td>Ignore FUA</td>
</tr>
<tr>
<td></td>
<td>Ignore FUA (If BBU is present)</td>
<td>Ignore FUA (If BBU is present)</td>
<td></td>
</tr>
<tr>
<td>Write Journaling</td>
<td>Enabled</td>
<td>Disabled, if no BBU present. (Enabled, if BBU is present.)</td>
<td>Disabled (If BBU is present, this essentially disables the BBU for this unit.)</td>
</tr>
<tr>
<td>Disable Cache on Degrade</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

- **FUA (Force Unit Access).** The FUA bit is a way that the RAID controller or a program (such as a database program) can ensure that data is actually written to the disk drive media, and is not stored in cache. When a write command has the FUA bit set, then the disk drive will only issue “command complete” to the controller once the data is written to media. When performance is considered more important than protection, it may be desirable to ignore the FUA bit.

 The Protection and Balanced profiles honor FUA commands if no BBU is present; the Performance profile ignores them regardless of whether a BBU is present.

 If you use a battery backup unit (BBU), FUA is ignored, because the BBU preserves the contents of the controller cache memory for a limited period of time (up to 72 hours), in the event of a power failure.

- **Write Journaling.** Write journaling tracks the writing of data to disk and preserves a copy of data that has not yet been written to the disk media. Following a power failure or in the event of accidental drive removal and reinsertion, the firmware can recover the unit without data loss. All pending writes sitting in the controller cache are replayed after power is restored or the drive is reinserted and are flushed from the controller to the drive.
Using write journaling helps protect your data, however it can have an impact on performance.

The Protection profile always enables write journaling and the Performance profile always disables write journaling, regardless of the presence of a BBU. The Balanced Profile disables write journaling if no BBU is present, and enables write journaling if a BBU is present.

If write journaling is disabled and a BBU is present, then it is as if the BBU was disabled for that unit.

- **Write cache disabled on degrade.** In the event that a unit degrades, the use of write cache can be disabled until the unit is rebuilt. Once the unit is rebuilt, the write cache will automatically be re-enabled.

 The Protection profile enables this feature, so that write cache is disabled in the event a unit degrades; the Performance and Balanced profiles disable this feature, so that write cache continues to be enabled.

Setting the StorSave Profile through 3DM 2

In 3DM 2, the StorSave Profile is a unit policy that can be set on the Controller Settings page.

To set the StorSave profile through 3DM 2

1. Choose Management > Controller Settings from the menu bar in 3DM 2.
2. In the Unit Policies section of the Controller Settings page, select the profile you want to use from the drop-down list in the StorSave column.

 The page refreshes, and a message at the top confirms the change you have made.

Setting the StorSave Profile through 3BM

In 3BM, the StorSave Profile is set on the Configure Disk Array screen.

To set the StorSave Profile through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.

 An asterisk appears in the left-most column to indicate that it is selected.
2. Tab to the Maintain Unit button and press Enter.
3. On the pop-up menu, select Configure and press Enter.
4. In the Configure Disk Array screen, Tab to the field StorSave Profile.
The current setting—Protection, Balanced, or Performance—is shown. (The default setting is Balanced.)

5 Press **Enter** to display the choices, use the **arrow keys** to select the setting you want, and press **Enter** again to choose it.

![StorSave Profile: Protection Balanced Performance]

6 **Tab** to the **OK** button and press **Enter** to select it.

You return to the main 3BM screen.

7 When you are finished making changes, press **F8** to save them and exit 3BM.

Rapid RAID Recovery

The Rapid Raid Recovery feature increases the speed with which a redundant unit can be made redundant again when a rebuild is required. It can also increase the speed of verification or initialization that may occur in the event of an unclean shutdown.

Rapid RAID Recovery is possible because the firmware maps the unit, and tracks the areas of the unit where write activity occurs. Then, if a rebuild, initialization, or verify is required, the controller only has to address the active areas. The fewer active areas, the faster the rebuild, initialize or verify.

Since the units are mapped out and tracked from the creation of the unit, this feature can only be enabled during unit creation. Also, once disabled, it cannot be re-enabled.

The more space is available on a unit, the more benefit you will see in the event of a rebuild, if you enable Rapid RAID Recovery. If all of a unit’s capacity is being used, you may not see reduction of rebuild speed when using Rapid RAID Recovery. However, Rapid RAID Recovery still provides benefits to unit verification and to initialization after an unclean shutdown, regardless of the disk usage.

Possible settings are **All** (labeled Fast Rebuild/Shutdown in 3BM), **Rebuild** or **Disable**. **All** will apply the policy to both rebuilds and unclean shutdowns. **Rebuild** will apply only to rebuilds. **Disable** means that rebuilds, initializations and verifies will take place on the entire unit, not just the active sections. The default setting is **All**.

There is some system overhead from setting rapid recovery to **All**. If you have a BBU, you can set rapid recovery to **Rebuild**, as a BBU provides protection against data loss in the event of an unclean shutdown.

Some limitations of Rapid RAID Recovery:
• Units with Rapid RAID Recovery enabled will not be readable if moved to controllers using pre-9.5.1 firmware. If you wish to move the unit to a controller with pre-9.5.1 firmware, you must first disable Rapid RAID Recovery.

• Units created on controllers with pre-9.5.1 firmware will not be able to take advantage of Rapid RAID Recovery when the controller is updated to 9.5.1 or later. These units will show Rapid RAID Recovery as disabled.

• Since the Rapid RAID Recovery feature tracks areas of the unit where write activity occurs, file systems such as FAT, FAT32, NTFS, and XFS are ideally suited to this implementation. For details on other file systems, search the LSI Knowledge Base for keyword 15462 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp. Protection against unclean shutdowns to provide a fast verification and initialization is the same regardless of the file system.

Changing or disabling Rapid RAID Recovery
Rapid RAID Recovery can only be enabled (that is - set to All or Rebuild) when the unit is created. You can change between All and Rebuild at any time. However, if you disable Rapid RAID Recovery, you cannot then enable it.

To change or disable Rapid RAID Recovery for an existing unit through 3DM 2

1 Choose Management > Controller Settings from the menu bar in 3DM 2.

2 In the Unit Policies section of the Controller Settings page, select All, Rebuild, or Disable from the Rapid RAID Recovery dropdown menu.

3 Click OK when 3DM 2 asks you to confirm your selection.

The page refreshes, and a message at the top confirms the change that you have made.

To change or disable Rapid RAID Recovery for an existing unit through 3BM

1 At the main 3BM screen, select the unit by highlighting it and pressing Enter.

 An asterisk appears in the left-most column to indicate that it is selected.

2 Tab to the Maintain Unit button and press Enter.

3 On the pop-up menu, select Configure and press Enter.
4 In the **Configure Disk Array** screen, **Tab** to the field **Rapid RAID Recovery** and select **Fast Rebuild/Shutdown, Rebuild, or Disable**.

A warning message appears, asking you to confirm your selection.

5 Type ‘Y’.

6 Make any other unit configuration changes you wish to implement and press **Enter**.

Changing An Existing Configuration by Migrating

You can convert one RAID configuration into another while the unit is online. This process is known as RAID Level Migration (RLM).

You can use RAID Level Migration to make two main types of configuration changes:

- **RAID Level** (for example, a RAID 1 to a RAID 5)
- **Unit Capacity Expansion** (for example, adding a 4th drive to a 3-drive RAID 5)

You can also use RLM to change the stripe size of a unit.

Note: A unit being migrated can still be used (I/O still continues), however the performance will be affected while the migrating task is active. You can control how much effect this has on performance by setting the background task rate. For more information, see “Setting Background Task Rate” on page 168.

This section includes the following topics about changing existing configurations:

- **RAID Level Migration (RLM) Overview**
- **Changing RAID Level**
- **Expanding Unit Capacity**
- **Informing the Operating System of Changed Configuration**

If you want to change the policy settings for an existing unit, there is no need to change the configuration. See “Setting Unit Policies” on page 107.

RAID Level Migration (RLM) Overview

RAID level migration is the process of converting one RAID configuration to another. When you migrate a unit to a different configuration, the user data on it is redistributed to the format of the new configuration. This data
redistribution process is a background task, similar to the rebuild or verify processes.

Figure 57 shows an example of how data is reconfigured during a migration. In this example, the migration is from a 3-drive RAID 0 to a 4-drive RAID 5, with both having the same stripe size. As can be seen, every piece of user data is moved from its original physical location.

Figure 57. RAID Level Migration Example

![Diagram showing RAID level migration example](image)

Typically, a unit is reconfigured with the same or more storage capacity. Sometimes additional drives are added. The following table shows valid reconfigurations, some of which will require the addition of more drives.

Table 10: Valid Migration Paths

<table>
<thead>
<tr>
<th>Source</th>
<th>R0</th>
<th>R1</th>
<th>R5</th>
<th>R6</th>
<th>R10</th>
<th>R50</th>
<th>Single</th>
<th>Spare</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R1</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>R5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>R6</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R10</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R50</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Single</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Spare</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Changing An Existing Configuration by Migrating

Note: Rapid RAID Recovery will be disabled on any unit that is migrated.

Warning: If you are booted from a mirror (RAID 1 unit), never split it into 2 single (identical) drives. Once the unit is split, any pending writes cannot be written to the second drive. In addition, the file system on the drive will not be clean. Instead, shut down the system, replace one of the drives, and start the rebuild from 3BM.

Note: You can only migrate a unit to a RAID level that has the same or more capacity as the existing one. A four-drive RAID 5 unit can migrate to a four-drive RAID 0, but a three-drive RAID 0 unit cannot migrate to a three-drive RAID 5, without adding another drive, due to the need for additional storage capacity for parity bits.

Changing RAID Level

You can use migrate to change the RAID level of an existing unit while the unit is online, without experiencing any data loss. When you change a RAID level, you may also add one or more drives to the unit. You can also migrate to change the unit's stripe size. For example, a four-drive RAID 5 with a 64KB stripe size can be migrated to a four-drive RAID 5 with 256KB stripe size. The steps below describe how to change a RAID level in 3DM 2.

Note: Once migration starts, the unit stays in the migrating state until the migration process is complete. The migration process cannot be aborted, and must be allowed to finish before a rebuild or verify to the unit is permitted.

Warning: It is important that you allow migration to complete before removing any drives that are involved in the migration. Removing drives from the unit during migration may cause the migration process to stop, and can jeopardize the safety of your data.

To change the RAID level of a unit

1 In 3DM 2, choose Management > Maintenance.

2 In the Unit Maintenance table on the Maintenance Page, select the unit for which you wish to change the RAID level, by checking the box next to the Unit ID.
Configuring Units

3 Click the Migrate Unit button.
 The Migrate dialog box appears.
4 Select any drives to be added to the unit.
5 Select the new RAID level.
6 Optionally, select a new Stripe size.
7 Click OK.
 The Maintenance page updates to show the new unit and the Migration progress.
8 Inform the operating system of the change, as described below under “Informing the Operating System of Changed Configuration”.

Expanding Unit Capacity

You can expand a unit's capacity by adding one or more drives to it without changing the RAID level, except for singles and RAID 1 units. (Since a single can only have one drive, and a RAID 1 can only have two drives, if you add a drive to either, the RAID level must be changed.)

For example, for a RAID 5 with 3 drives, you can change the capacity by adding a forth drive.

Expanding unit capacity can be accomplished while the unit is online, without experiencing any data loss. This process is also referred to as Online Capacity Expansion (OCE).

To expand a unit’s capacity
1 In 3DM 2, choose Management > Maintenance.
2 In the Unit Maintenance table on the Maintenance Page, select the unit you wish to expand by checking the box next to the Unit ID.
3 Click the Migrate Unit button.
 The Migrate dialog box appears, listing the drives which can be added to the unit.
4 Select the drives(s) you wish to add to the unit by checking the Port ID box next to each one.

Note: The unit to be migrated must be in a normal state (not degraded, initializing, or rebuilding) before starting the migration.
5 If desired or necessary, select the appropriate RAID level.

6 Click **OK**.

 The Maintenance page updates to show the newly reconfigured unit. The Status column title indicates that Migration is in progress.

7 If you booted from the unit that is being migrated, when migration is complete, reboot your system. Then turn to Step 4 under “Informing the Operating System of Changed Configuration” on page 127.

8 After the migration is complete, inform the operating system of the change, as described below.

 You can check the status of the migration on the Maintenance page.

Informing the Operating System of Changed Configuration

After you change the configuration of a unit, you must inform the operating system of the change, and you may need to re-partition the unit.

In addition, in order to use the new capacity, you need to either resize the existing partition or add a new partition.

To inform the operating system that a unit has been changed

1 If the unit you reconfigured is the boot unit, restart the system and skip to Step 3.

 If the unit you reconfigured is secondary storage, unmount the file system from the unit.

 Under Windows, go to **Start > Administrative Tools > Computer Management**, and select **Disk Management**. Remove the logical drive letter for the unit.

 Under Linux, from a command prompt, type `sync<enter>`, `sync<enter>`, `sync<enter>`.

 You can then unmount the unit with this command: `umount <mount location>`.

2 In the software, remove and rescan the controller, in order to update unit information.

 a In 3DM 2 choose **Management > Maintenance** and select the appropriate unit.

 b Click the **Remove Unit** button.
c After the unit has been removed, click the **Rescan** button. The new unit capacity displays.

3 Resize the partition and file system or create a new partition.

In Windows, use the disk management utility to determine whether the disk is a basic disk or a dynamic disk.

- Go to Administrative Tools > Computer Management, and then select Disk Management in the list on the left.

Only dynamic disks can be expanded with Windows Disk Management. If the unit is shown as a basic disk, right-click on the disk icon and change it to a dynamic disk.

Older Windows systems cannot convert basic disks into dynamic disks after the file system has been created.

- If the unit is shown as a dynamic disk, right-click on it and choose Extend Volume to launch the Extend Volume wizard.

In Linux, the tools to expand the partition and file system can vary, depending on the kernel version and file system that you are using. Please consult your Linux documentation and the LSI Knowledge Base for more information.

Deleting a Unit

You delete a unit—either an array of disks, or a Single Disk—when you want to reconfigure the unit or use the drives for other purposes.

After you delete a unit, the drives appear in the list of Available Drives.

Warning: When a unit is deleted, all of the data on that unit will be lost. The drives cannot be reassembled into the same unit because the data on it is erased. If you want to reassemble the drives into the same unit on another controller, use the **Remove Unit** button in 3DM instead of the **Delete Unit** button. Or, if you’re at the BIOS level already, you can shut down the computer and physically move the drives to another 3ware 9750 RAID controller. When you restart your system, the controller will recognize the unit. For more information see “Moving a Unit from One Controller to Another” on page 133.

If you have incomplete drives, or drives that appear with a message such as “Unsupported DCB,” indicating that they were previously part of a unit on a 3ware 7000/8000 series controller, they must be deleted before you use them. (If you want to move a unit from a 7/8000 controller to a 9750 controller, you must convert the drives first. For more information, see “Moving a Unit from One Controller to Another” on page 133.)
Deleting a Unit through 3DM

In 3DM, the command for deleting a unit is on the Maintenance page. Be sure to follow steps 1 through 3 in the instructions before using the Delete command.

To delete a unit through 3DM 2

1. Make sure the operating system is not accessing the unit you want to delete.

 For example, make sure you are not copying files to the unit, and make sure that there are no applications with open files on that unit.

2. Backup any data you want to keep.

3. Unmount the unit.

 This step is very important. If a unit is not unmounted and you delete it, it is the equivalent of physically yanking a hard drive out from under the operating system. You could lose data, the system could hang, or the controller could reset.

 Under Windows, go to **Start > Administrative Tools > Computer Management**, and select **Disk Management**. Remove the logical drive letter for the unit.

 Under Linux, you can unmount the unit with this command:

   ```
   umount <mount location>
   ```

4. In 3DM 2, choose **Management > Maintenance**.

5. In the Unit Maintenance section of the Maintenance page, select the unit you want to remove and click **Delete Unit**.

6. When a message asks you to confirm, click **OK**.

 Configuration information associating the drives with the unit is deleted, and the individual drives appear in the Available Drives list (Figure 58). You can now use them as part of another unit, or designate them as Spares, for use in a rebuild.
Deleting a Unit through 3BM

In 3BM, the command for deleting a unit is on the main 3BM screen.

To delete a unit through 3BM

1. At the main 3BM screen, select the unit in the list of Exportable Units by highlighting it and pressing Enter or Space.

 An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Delete Unit button and press Enter.

 Note: If you want to delete an incomplete drive or unusable unit, or a drive that appears with a message such as "Unsupported DCB," select it in a similar manner and then select Delete Unit, even though it appears in the list Incomplete Drives and Others.

 Warning: Any data on the unit will be lost once the unit is deleted. Backup any data that you want to keep.

3. On the Delete Disk Array screen, review the information about the unit to make sure it is the one you want to delete.
Removing a Unit

Removing a unit through software (also known as 'array roaming') keeps the data intact on the unit. It allows you to move the unit to another controller or to store the drives for safekeeping purposes.

Removing a unit is different than deleting a unit. Deleting a unit will destroy the data on the unit.

Warning: It is important to remove the unit through software, before removing it physically. Failure to do so could result in a system crash or hang and may even corrupt the data and the unit configuration from being reassembled later.

Power-down your system before physically removing any drive that is not in a hot swap bay.

Note: You can also remove a drive, if you want to force a degrade on a redundant unit, or if you want to remove a drive from the “Available Drives” list so that you can then remove it from the system. For more information, see “Removing a Drive” on page 136.
Removing a Unit Through 3DM

In 3DM, the command for deleting a unit is on the Maintenance page. Be sure to follow steps 1 and 2 in the instructions before using the Remove command.

To remove a unit through 3DM 2

1. Make sure the operating system is not accessing the unit you want to remove.
 For example, make sure you are not copying files to the unit, and make sure that there are no applications with open files on that unit.

2. Unmount the unit.
 This step is very important. If a unit is not unmounted and you remove it, it is the equivalent of physically yanking a hard drive out from under the operating system. You could lose data, the system could hang, or the controller could reset.

 Under Windows, go to Start > Administrative Tools > Computer Management, and select Disk Management. Remove the logical drive letter for the unit.

 Under Linux, you can unmount the unit with this command:
   ```bash
   umount <mount location>
   ```


4. In the Unit Maintenance table on the Maintenance page, select the unit you want to remove and click Remove Unit.

5. When a message asks you to confirm, click OK.
 The unit number and information is removed from the Maintenance page in 3DM 2.

 The operating system is notified that the unit was removed. In Linux the device node associated with this unit is removed. In Windows the Device Manager will reflect the changes under the disk drives icon.

 You can now physically remove the drives and move them to another controller. If the drive is in a hot swap bay, you can do this without shutting down the system. If the drive is not in a hot swap bay, power-down the system and ground yourself before making changes to the hardware.

Note: If your drives are not in hot swap bays, you do not need to remove a unit via 3DM. Simply power down the system and remove the applicable drives. Refer to your system’s user guide for details on removing fixed disks. If your drives are in hot swap bays, follow the steps below.
If you change your mind before physically removing the drives and want to reuse the drives and unit on the current controller, just click **Rescan Controller**.

Removing a Unit Through 3BM

Note: Even though removing a unit is supported in 3BM, you can also simply power down to remove the applicable drives since you are not booted yet.

To remove a unit through 3BM

1. If your drives are not in hot swap bays, you do not need to remove a unit via 3BM. Simply power down and remove the applicable drives. Refer to your system’s user guide for details on removing fixed disks.

 Warning: Physically removing drives which are not in hot swap bays can result in a system hang or may even damage the system and the drive.

2. At the main 3BM screen, highlight the unit you want to remove and press **Enter** to select it.

 An asterisk appears in the left-most column to indicate that the unit is selected.

3. Tab to the **Maintain Unit** button and press **Enter**.

4. In the pop-up menu, select **Remove** and press **Enter**.

 You can now physically remove the drives and move them to another controller. If your drives are in hot swap bays, you can do this without shutting down the system.

Moving a Unit from One Controller to Another

After you have configured a unit on a 3ware 9750 controller, you can move it to a different 3ware 9750 controller, and retain the configuration on the new controller. This is referred to as “array roaming.”

When connecting the unit to the new controller, you do not have to physically connect the drives to the same physical slots to which they were connected on the previous controller. The firmware will still recognize the unit. This feature is referred to as “disk roaming.”
3DM 2 includes two features that help you move a unit without powering down the system, allowing you to hot swap the unit. The Remove Unit feature lets you prepare a unit to be disconnected from the controller, and the Rescan feature checks the controller for drives that are now connected, and updates the 3DM 2 screens with current information. For details, see “Removing a Unit” on page 131 and “Rescanning the Controller” on page 138.

Note: Moving a unit to another controller while the unit is in the migration state is supported with one restriction. If the unit was in the middle of the migration process and the controller was shutdown uncleanly, the unit cannot be moved to another controller until the unit has recovered from the unclean shutdown. This may require initializing, verifying, or rebuilding the unit.

Moving Units from an Earlier 9000 Series to a 9750 Controller

If you are moving units from a 9550SX or later 9000-series controller to a 9750 controller, the process is a little different from when you are moving units from one 9750 to another. The steps you follow depend on whether you are booting from the drives attached to the older controller, or whether they are being used for secondary storage.

Note: Only SATA-2 drives are supported on the 9750. You cannot move SATA-1 drives.

To move a bootable unit from an earlier 9000 series controller to a 9750 controller

1. If you are working with a Linux system, skip to step 2.

 If you are working with a Windows system:

 a. Power down the computer.

 b. Install the 9750 controller in the computer, leaving the original controller installed and its drives attached.

 c. Boot to the operating system.

2. Install the driver for the 9750 RAID controller.

 If you are using Linux, you may also need to update the initial RAM disk. For more information, see “Updating the 3ware Driver Under Red Hat or Fedora Core” on page 183 or “Updating the 3ware Driver Under SUSE” on page 185.

3. Power down the computer.
4 Remove the original controller.

5 If you are working with a Linux system, install the 9750 controller.

6 Attach the drives that were on the original controller to the 9750 controller.

7 Power up the computer and verify that the upgrade is complete. (The existing units should be available for use.)

8 Remove old 3DM and CLI files and install new versions.

To move a secondary storage unit from an earlier 9000 series controller to a 9750 controller

1 Power down the computer.

2 Remove the 9690SA, 9650SE, or 9550SX controller.

3 Install the 9750 controller in the computer.

4 Attach the drives that were on the original controller to the 9750.

5 Boot to the operating system.

6 Install the driver for the 9750.

 If you are using Linux, you may also need to update the initial RAM disk. For more information, see “Updating the 3ware Driver Under Red Hat or Fedora Core” on page 183 or “Updating the 3ware Driver Under SUSE” on page 185.

7 Reboot if you are prompted to do so by the operating system.

8 Remove old 3DM and CLI files and install new versions.

Adding a Drive

If you have a hot swap bay or an enclosure with removable trays, you can add a drive to your system and make it available through 3DM 2 without powering down the system.

Without hot swap bays, you should not add a drive via 3DM. Instead, power down the system and add the applicable drives.

Warning: Physically adding a drive without using a hot swap bay and without powering down your system can result in a system hang or may even damage the system and the drive.
To add a drive

1. Insert the drive into the hot swap bay or into your enclosure. For details, refer to the documentation for your enclosure.

2. In 3DM 2, choose Management > Maintenance.

3. On the Maintenance page, click Rescan Controller.

The drive will appear in the list of available drives. You can now use it in a new RAID configuration, as part of an existing configuration, or as a replacement drive in the event that another drive degrades.

If you want to use this drive as a spare, see “Creating a Hot Spare” on page 104.

Removing a Drive

If you have hot swappable drives in a carrier or an enclosure and you want to physically remove a drive from your system without powering it down, you should first remove it through the 3ware software.

Follow this procedure if you know that a drive is developing a problem and you want to replace it, or to replace a drive which has already failed.

Warnings:

Physically removing a drive that is not in a hot swap bay or that is part of a non-redundant unit, can result in a system hang or may even damage the system and the drive.

The steps below will destroy any information that identifies this drive as part of a RAID unit. **Existing data on this drive will no longer be available.**

Notes:

If you want to remove a unit from your system and reassemble it in another system, do not follow these steps. Instead, turn to “Removing a Unit” on page 131.

If you physically remove a drive on a controller without first removing it in 3DM 2, it will be listed as removed, however it will not be completely removed unless you Rescan the controller.

Drives that are part of a non-redundant or degraded unit cannot be removed.
To remove a drive

1. In 3DM 2, choose **Management > Maintenance**.

 On the Maintenance page, **Remove Drive** links appear next to all drives that can be removed from units, and next to drives in the Available Drives list.

2. Locate the drive you want to remove and click the **Remove Drive** link (Figure).

3. When 3DM 2 asks you to confirm that you want to remove the drive, click **OK**.

 You can now remove the drive from your system.

 If you removed a drive that was part of a unit, the unit will become degraded, as shown in (Figure 60).

Figure 60. Result of Removing Drive from Unit in 3DM 2
Rescanning the Controller

When you make a change by physically adding or removing drives or units, you can have 3DM 2 rescan the controller to update the list of units and available drives shown on the **Maintenance** page.

This is useful in a variety of circumstances. For example, if you add new drives to the controller, you can make them available by rescanning the controller. Or if you turn on an enclosure after turning on your computer, you can use rescan to make the controller see the drives.

Rescanning checks all ports on the controller. It then updates the status of all attached disks, so if error conditions have been fixed, the status is updated to reflect that. For more details about how the Rescan feature works, see the information in the 3DM 2 Reference section, under “Maintenance page” on page 219.

To rescan the controller through 3DM

1. In 3DM 2, choose **Management > Maintenance**.
2. On the Maintenance page, click **Rescan Controller**.

 3DM 2 scans the controller for information about units and drives, and updates the information shown on the **Maintenance** page.

To rescan the controller through 3BM

1. From the main 3BM screen, press Alt-r.

 You are warned that any configuration changes you have made in 3BM will be lost.

2. Type `Y` for Yes to rescan the controller.
Maintaining Units

3ware RAID controllers include a number of features in the firmware that help maintain the integrity of your drives, check for errors, repair bad sectors, and rebuild units when drives degrade. In addition, 3ware BIOS Manager (3BM) and 3ware Disk Manager 2 (3DM 2) provide tools to let you check unit and drive status, and manually start background maintenance tasks. 3DM 2 also lets you review alarms and errors and schedule background maintenance tasks. On Windows systems, the WinAVAlarm utility monitors the controller and will display a message window and give an audible alarm when events occur at or above the threshold you select for it.

Details about these features are described in this section, which is organized into the following topics:

• Checking Unit and Drive Status through 3DM
 • Viewing a List of Drives
 • Enclosure Drive LED Status Indicators
 • Unit Statuses
 • Drive Statuses
• About Degraded Units
• About Inoperable Units
• Locating a Drive by Blinking Its LED
• Alarms, Errors, and Other Events
• Background Tasks
• Scheduling Background Tasks

Checking Unit and Drive Status through 3DM

The information screens in 3DM 2 let you see both summary and detailed information about your 3ware RAID controller, configured units, and available drives. You can quickly see the status of your controller and drives, and drill down to find details about any units or drives that have problems.

A status column on the controller, unit, and drive information pages lets you quickly see whether everything is working (OK), performing a task (such as initializing, verifying, or rebuilding), or has a problem (error, degraded, warning).
The next figure illustrates how you can drill down to get additional detail about units and drives in your system.

Figure 61. Drilling Down to Check Status Information

For some RAID levels (RAID 6, RAID 10, and RAID 50), a single RAID unit may have more than one status. For example, part of the unit could be rebuilding, while another part is degraded or initializing. When this is the case, you will see both statuses listed at the top unit level. When you drill in to see details, you will be able to see which the specific subunits or drives to which the status applies.

For an explanation of unit and drive status, see:

- “Unit Statuses” on page 143
- “Drive Statuses” on page 144

If you use a supported enclosure with enclosure services, the LEDs on your enclosure may also provide some status information. For details, see “Enclosure Drive LED Status Indicators” on page 142.
Viewing a List of Drives

You can see a list of drives connected to your 3ware RAID controller, and see additional detail about each of those drives.

To view a list of drives in 3DM 2

- Choose Information > Drive Information from the main menu in 3DM 2.

On the Drive Information page, you can access details about any of the drives listed by clicking the link for that drive in the VPort column.

For more information about the Drive Information page, see page 206.

To view a list of drives in 3BM

1. On the main 3BM screen, Tab to Information and press Enter.
2. On the pop-up menu, select Drives and press Enter.
3. On the Drive Information page, use the arrow keys to move from one drive to another.

Details about the selected drive are displayed in the bottom of the page.
Tip: You can scroll both sections of the Drive Information page to bring additional drive information or drives into view. Press Tab to move between the two sections.

Figure 63. Drive Information page (3BM)

Enclosure Drive LED Status Indicators

If you have a supported enclosure or chassis, the LEDs on your enclosure may be able to provide some status information about your drives and units. (You can find a list of supported enclosures from the Data & Interoperability tab, on http://wwwlsi.com/channel/support/marketing_resources.)

Note: The following table is an example of how LEDs may be used. Check with your chassis or enclosure documentation for more details. Not all features may be supported or implemented in the same way on all chassis.

<table>
<thead>
<tr>
<th>Color</th>
<th>Drive Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid green</td>
<td>OK</td>
</tr>
<tr>
<td>Blinking green</td>
<td>Identify</td>
</tr>
<tr>
<td></td>
<td>This occurs when you have</td>
</tr>
<tr>
<td></td>
<td>used the Identify command</td>
</tr>
<tr>
<td></td>
<td>in 3DM 2 to locate a</td>
</tr>
<tr>
<td></td>
<td>particular drive or unit.</td>
</tr>
<tr>
<td></td>
<td>(See “Locating a Drive</td>
</tr>
<tr>
<td></td>
<td>by Blinking Its LED” on</td>
</tr>
<tr>
<td></td>
<td>page 145.)</td>
</tr>
<tr>
<td>Black</td>
<td>No drive</td>
</tr>
<tr>
<td>Solid Amber</td>
<td>Hot spare</td>
</tr>
<tr>
<td>Blinking amber</td>
<td>Rebuilding</td>
</tr>
<tr>
<td></td>
<td>The drive in this slot is</td>
</tr>
<tr>
<td></td>
<td>part of a RAID unit that</td>
</tr>
<tr>
<td></td>
<td>is currently rebuilding.</td>
</tr>
<tr>
<td></td>
<td>You can continue to use</td>
</tr>
<tr>
<td></td>
<td>the unit. For more</td>
</tr>
<tr>
<td></td>
<td>information, see “Rebuilding Units” on page 160.</td>
</tr>
</tbody>
</table>
Unit Statuses

The following is a list of unit statuses you may see in 3DM 2:

- **OK.** The unit is optimal and is functioning normally.
- **Rebuilding.** The unit is in the process of writing data to a newly added disk in a redundant unit, in order to restore the unit to an optimal state. The unit is not fully fault tolerant until the rebuilding is complete. For more information, see “To verify a unit through 3BM” on page 159.
- **Rebuild-Paused.** The unit is set to rebuild, however scheduling is enabled, and the present time is not during a scheduled timeslot. Rebuilding will start at the next scheduled time slot. Rebuilds are also paused for up to ten minutes after a reboot, even during a scheduled timeslot.
- **Initializing.** The unit is in the process of writing to all of the disks in the unit in order to make the array fault tolerant. For more information, see “About Initialization” on page 152.
- **Initializing-Paused.** The unit is set to initialize, however scheduling is enabled and the present time is not during a scheduled timeslot. Initializing will start at the next scheduled time slot. Initializations follow the Rebuild/Migrate task schedule. Initialization is also paused for up to ten minutes after a reboot, even during a scheduled timeslot.
- **Verifying.** The unit is in the process of ensuring that the parity data of a redundant unit is valid. For more information, see “About Verification” on page 155.
- **Verify-Paused.** The unit is set to verify, however, scheduling is enabled, and the present time is not during a scheduled timeslot. Verification will start at the next scheduled time slot.
- **Migrating.** The unit is in the process of being reconfigured while it is online. Migration can be used to change the RAID level, to expand the capacity by adding additional drives, or to change the stripe size. For more information, see “Changing An Existing Configuration by Migrating” on page 123.

Table 11: Meaning of LED Colors and Behavior

<table>
<thead>
<tr>
<th>Color</th>
<th>Drive Status</th>
</tr>
</thead>
</table>
| Solid red | Drive fault
This drive has failed. You should replace it and rebuild the unit. |
| Blinking red | Predicted drive fault
3ware software predicts that this drive will fail soon. You may want to replace it. |
Maintaining Units

- **Migrate-Paused.** The unit is in the process of migrating, however scheduling is enabled, and the present time is not during a scheduled timeslot. Migrating will start at the next scheduled time slot. Migration is also paused for up to ten minutes after a reboot, even during a scheduled timeslot.

- **Degraded.** One or more drives in the redundant unit is no longer being used by the controller. For more information, see “About Degraded Units” on page 144.

- **Inoperable.** This is a condition where one or more drives are missing from a unit, causing the unit to no longer be available to the operating system. Data on an inoperable unit cannot be accessed. For more information, see “About Inoperable Units” on page 145.

Drive Statuses

The following is a list of drive statuses you may see in 3DM 2:

- **OK.** The drive is fine and is functioning normally.
- **Not Present.** No drive is present in this slot.
- **Drive Removed.** The drive has been removed.
- **Other.** A number of other drive statuses may appear in the event of a problem. If you have a question about a status shown, contact LSI customer support. Knowing the exact drive status can help trouble-shoot the problem.

About Degraded Units

Fault-tolerant RAID units provide data redundancy by duplicating information on multiple drives. These RAID units make it possible to continue use even if one of the drives in the unit has failed.

- RAID 1 and RAID 10 units each use mirroring to achieve fault tolerance. Identical data is stored on two or more drives to protect against drive failure.
- RAID 5, RAID 6, and RAID 50 units achieve fault tolerance by using a simple (exclusive OR) function to generate the parity data that is distributed on all drives.
- RAID 6 adds an extra level of protection over RAID 5 by generating a second parity when data is written. This allows two drives to fail without compromising data integrity, especially on larger units.

When one of the drives in a fault-tolerant unit fails or is removed or unplugged, the unit is said to be **degraded.**
You can still read and write data from a degraded unit, but the unit will not be fault tolerant until it is rebuilt using the Rebuild feature.

When a RAID unit becomes degraded, it is marked as such, and the drive(s) that failed are marked as **Not In Use** in the 3BM screens and **Degraded** in the 3DM 2 pages. If supported by your enclosure, the LED for failed drives may turn red.

You should replace the failed drive and rebuild the unit as soon as it is convenient to do so. The unit will not be fault tolerant until it has been rebuilt. Rebuilding can occur automatically, depending on your settings. For more information, see “Rebuilding Units” on page 160.

About Inoperable Units

Units become inoperable when there are no longer enough drives in the unit for it to function. For example, a RAID 5 unit created from four drives becomes degraded if one drive fails or is removed, but becomes inoperable if two drives fail or are removed. A RAID 6 unit created from five drives becomes degraded if one or two drives is removed, but becomes inoperable if three drives fail or are removed.

Data on an inoperable unit cannot be accessed unless the missing drives are reconnected.

If you have data on a unit that is currently “inoperable,” contact technical support. A form is available on the web at http://www.lsi.com/channel/ContactUs.

Locating a Drive by Blinking Its LED

If you use a supported enclosure with enclosure services, you may be able to easily identify the drives in a unit, or locate an individual drive, by causing the LEDs associated with the drives to blink.

You can issue the command to blink the LED through 3DM or 3BM.

For details about what the different LED patterns on the enclosure may mean, see “Enclosure Drive LED Status Indicators” on page 142.

To blink the LED for a drive through 3DM 2

1. Do one of the following:
 - Choose **Information > Drive Information** from the main menu in 3DM 2. On the Drive Information page, identify the drive you want to physically locate.
• Choose Monitor > Enclosure from the main menu in 3DM 2. On the list of enclosures, click the ID number of the enclosure. On the Enclosure Detail page, identify the drive you want to physically locate.

2 Check the box in the Identify column. The LED on the enclosure begins blinking.

3 When you are finished working with the drive and no longer need to see the LED, return to this page and uncheck the Identify box.

To blink the LED for a drive through 3BM
1 On the main 3BM screen, Tab to Information and press Enter.
2 On the pop-up menu, select Drives and press Enter.
3 On the Drive Information page, use the arrow keys to select the drive you want to identify.
4 Press F4. The LED on the enclosure begins blinking. (Note that this feature is only available for drives in enclosures.)
5 When you are finished working with the drive and no longer need to see the LED, return to this page and press F4 again to halt the blinking.

To blink the LEDs for all drives in a unit
1 Choose Information > Unit Information from the main menu in 3DM 2.
2 On the Unit Information page, identify the unit you are interested in.
3 Check the box in the Identify column. The LEDs for the drives in the selected unit begin blinking.
4 When you no longer need to see the LEDs, return to this page and uncheck the Identify box.
Alarms, Errors, and Other Events

3ware provides several levels of detail about alarms, errors, and other events. This information is available through the 3DM 2 web application and the CLI. On Windows systems, the WinAVAlarm alert utility can also be used to notify you of events.

The next few pages describe these capabilities.

- “Viewing Alarms, Errors, and Other Events” on page 147
- “Using the Alert Utility Under Windows” on page 148
- “Downloading an Error Log” on page 150
- “Viewing SMART Data About a Drive” on page 150

CLI capabilities are described in the 3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0.

Tip: If you have a supported enclosure, the LEDs on your enclosure may also provide you with status information about drives. For more information, see “Enclosure Drive LED Status Indicators” on page 142.

Viewing Alarms, Errors, and Other Events

The Alarms page in 3DM 2 shows a log of all events (also called Asynchronous Event Notifications, or AENs) that have occurred on units. These events include alarms that occur when the 3ware RAID controller requires attention, such as when a disk unit becomes degraded and is no longer fault tolerant. They also include SMART notifications and informational notification, such as when sectors have been repaired during verification.

Event messages are categorized into the following levels of severity:

- Errors (high severity events), shown next to a red box
- Warnings, shown next to a yellow box
- Information, shown next to a blue box

Examples of event messages:

- Error: Unclean shutdown
- Warning: Degraded unit
- Information: Start and completion of rebuilding, verifying, initializing, migrating, and so forth.

3DM 2 can e-mail notifications of these events to one or more recipients. For more information, see “Managing E-mail Event Notification” on page 72.
If your 3ware RAID controller is installed in a Windows system, the WinA V Alarm alert utility can notify you of events immediately with an audible alarm and a popup message. For details, see “Using the Alert Utility Under Windows” on page 148.

A list of the possible error and other event messages is provided under “Error and Notification Messages” on page 246.

To view alarms, errors and other events in 3DM

1 Choose Monitor > Alarms.

 The Alarms page displays, listing all event notifications.

2 For details about a particular alarm, click it.

 A Help window opens with additional information about the alarm.

To see an explanation of a specific item in 3DM

• Click on the message you are interested in, on the 3DM Alarms page.

 A help topic opens with additional information.

Using the Alert Utility Under Windows

An alert utility, WinA V Alarm, is automatically installed on Windows systems when 3DM is installed. It can provide immediate notification of events, through a popup message and an audible alert. By default it is set to notify you whenever an error (high-severity event) occurs, through both a popup message and an audible alert. You can configure the alert settings to specify types of events you want to be notified of: Errors, Warnings, or Information.

WinA V Alarm is a stand-alone utility and does not require 3DM to be running, unlike e-mail notification. After it is installed, an icon for it appears in your System tray.
To change the alert utility settings

1. Double-click on the WinAVAlarm icon in the system tray.

![WinAVAlarm in the Windows System Tray](image)

2. In the Windows Audible Visual Alarm window, select the types of alerts you want to be notified of.

 If you want to turn off the sound alarm and only have a pop-up message appear, check the **Audio Off** button.

![WinAVAlarm Popup Window](image)

 If you wish, you can open 3DM from this window by clicking **Open Browser**. This can be useful when you receive a message, because the 3DM Alarms page allows you to easily access online help associated with the events.

3. Click **OK** to close the window and accept any changes you have made.
Downloading an Error Log

You can download an error log containing information from the firmware log. This can be useful when troubleshooting certain types of problems. For example, you might want to send the saved file to 3ware Customer Support for assistance when troubleshooting.

To download the error log

1. In 3DM 2, choose **Information > Controller Details** from the menu bar.
2. Make sure the correct controller is displayed in the **Select Controller** field in the menu bar.
3. On the Controller Details page, click the **Download Error Log** link.
4. When the Save or Open dialog box appears, navigate to where you want to save the log and click **OK**.

Viewing SMART Data About a Drive

You can view SMART (Self-Monitoring, Analysis, and Reporting Technology) data about a SATA drive to help troubleshoot problems that occur. SMART data is available on all SATA disk drives (unit members, Single Disks, and Hot Spares). Although SAS drives are monitored, the data for them is not displayed.

You can also set self-tests that will check the SMART attributes and post messages to the Alarms page when they are exceeded. For more information, see “Selecting Self-tests to be Performed” on page 174.

To view SMART data

1. Choose **Information > Drive Information** from the menu bar.
2. On the Drive Information page, click the port number for the drive you are interested in.

 A window showing details of the SMART data opens. The data is shown as hex values.

 Only SMART data for SATA drives is displayed.
Background Tasks

Background tasks are maintenance tasks that help maintain the integrity of your drives and data. These tasks include

- Initialization of units
- Verification of units
- Rebuilds when units have become degraded
- Migration of units from one configuration to another
- Self-tests

3ware RAID management software includes some controls to help you balance completion of these tasks with host I/O responsiveness, so as to minimize any conflict between the two. For example, you can schedule when backgrounds tasks should be run (to avoid peak work hours) and you can specify the rate at which they run in relationship to foreground I/O tasks. You can also set the background task mode to address the issue of latency.

This section includes the following topics related to background tasks:

- About Initialization
- About Verification
- Starting a Verify Manually
- Rebuilding Units
- Cancelling a Rebuild and Restarting It with a Different Drive
- Working with the Background Task Mode
- Setting the Background Task Mode
- Setting Background Task Rate
- Background Task Prioritization
- Scheduling Background Tasks
- Viewing Current Task Schedules
- Turning On or Off Use of a Rebuild/Migrate Task Schedule
- Removing a Task Slot from a Schedule
- Adding a New Task Schedule Slot
- Selecting Self-tests to be Performed

Although the migration of a unit is handled as a background task, initiating it is similar to creating a new unit. For details, see “Changing An Existing Configuration by Migrating” on page 123.
About Initialization

For 3ware SATA RAID controllers, initialize means to put the redundant data on the drives of redundant units into a known state so that data can be recovered in the event of a disk drive failure. This is sometimes referred to as background initialization or resynching, and does not erase user data.

Some RAID levels must be initialized for best performance. (For specifics, see “Initialization of Different RAID Types” on page 153.) When these units are created in the BIOS (through 3BM), you can choose to do a foreground initialization, which will take place before the operating system has loaded, or a background initialization, which allows you to put the unit in service immediately, but will slow down the unit performance until it completes. You can elect to cancel foreground initialization, put the units into service, and have initialization run in the background, instead.

Foreground Versus Background Initialization

Initialization makes parity information valid. Foreground initialization does this by simply writing zeroes to all the drives so that they all have the same values, overwriting any existing data in the process. In contrast, background initialization uses an algorithm to resynch the parity information on the drives and does not rewrite existing data.

A foreground initialization can be run from the BIOS using 3BM. It clears all existing data from the drives. Foreground initialization can take up to several hours, depending upon the size of the unit. After foreground initialization completes, you can start the operating system and units will perform at peak efficiency.

If immediate access to the unit is important, select background initialization. Background initialization will then start automatically within about 10 minutes. Background initialization (resynching) does not write zeroes to the drives or harm your data. You can partition, format, and use the unit safely while it is initializing. The unit is fully fault-tolerant while the initialization takes place. That is, if the unit degrades before the initialization is complete, the data will remain intact.

When initializing is done after booting to the operating system, the process of initializing takes longer than it does if initialization is done by writing zeroes to the unit in the BIOS. Consequently, it will be a longer period of time until the performance of the unit is fully optimal.

Note: Drives that support the Write Same feature (SCT) can write to multiple drive sectors at once, improving initialization time. To take advantage of this feature, all the drives in the unit must support Write Same.
Although you can use the unit while it is being initialized in the background, initialization does slow I/O performance until completed. You can adjust how much initialization will slow performance by setting the rate at which it occurs. (See “Setting Background Task Rate” on page 168.) You can also postpone initialization until a scheduled time. (See “Scheduling Background Tasks” on page 169).

Note: Units that do not need to be immediately initialized for full performance will be automatically initialized using background initialization when they are verified for the first time. (Verification requires that the units have been previously initialized.) This will not affect the data on the drives, and the units will perform normally, although performance will be slowed until the initialization and verification are completed.

Initialization of Different RAID Types
Information about initialization for each of the different RAID types is described below and summarized in Table 12 on page 154.

Initialization of RAID 0 Units
RAID 0 units do not need to be initialized and cannot be initialized. RAID 0 units are immediately available for use with full performance when created.

Initialization of RAID 5, RAID 6, and RAID 50 Units
RAID 5 units with three or four drives will be automatically initialized the first time they are verified. Regardless of the size, all 9000-series RAID 5, RAID 6, and RAID 50 units are fully fault tolerant upon creation. These configurations use a specialized scheme for writing to the unit, which does not have to be valid to provide fault tolerance.

Performance of the following types of units will improve after the unit has been initialized: RAID 6, RAID 5 units with 5 or more disks, and RAID 50 units with 2 subunits of 5 or 6 disks. For these configurations, initialization begins automatically after you create them. If you create them in 3BM using the default foreground initialization method, zeroes are written to all unit members before booting to the operating system. If you create them through 3DM, you will boot to the operating system and the RAID 5 parity is then calculated and written to disk, keeping any data in the unit intact.

RAID 5 units with 3 or 4 disks do not need to be initialized to have full performance upon creation. It is okay that 3 or 4 disk RAID 5 units are not initialized. These RAID types are fully redundant, regardless of whether or not they are initialized. Similarly, RAID 50 units with a grouping of 3 or 4 disks in a subunit do not need to be initialized. However, RAID 50 with a
grouping of 5 or more disks in a subunit do need to be initialized for full performance.

Notes:
For RAID 5 and RAID 6 with more 5 or more drives, it is strongly required that you initialize the unit. Initialization is critical to insuring data integrity on the unit. The initialization can be a background or foreground initialization.

For RAID 5 with 3 or 4 drives, initialization before use is not required. However, initialization is required before a unit can be verified. Consequently, if you attempt to verify a RAID 5 with 3 or 4 drives that has not yet been initialized, you will see a message that the array has not been initialized, and initialization will begin. This is considered part of the normal operation of the unit.

Initialization of RAID 1 and RAID 10 Units

RAID 1 and RAID 10 units do not need to be initialized when they are created. They are fault tolerant and are immediately available for use with full performance when created.

Initialization of RAID 1 or RAID 10 units will take place automatically the first time the unit is verified.

Initialization of a RAID 1 unit results in data from one disk (the disk on the lower port number) being copied to the other disk. In RAID 10 units, data from one half of the unit is copied to the other half.

After the initialization, subsequent verifies to a RAID 1 or RAID 10 unit check for data consistency by comparing the data from one drive (or set of drives) to the other drive (or set of drives).

Table 12: Initialization Requirements for Different RAID Configurations

<table>
<thead>
<tr>
<th>Initialization Required for Highest Performance?</th>
<th>RAID Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Single drive</td>
</tr>
<tr>
<td>No</td>
<td>RAID 0</td>
</tr>
<tr>
<td>No</td>
<td>RAID 1</td>
</tr>
<tr>
<td>No</td>
<td>RAID 10</td>
</tr>
<tr>
<td>No</td>
<td>RAID 5 with 3 or 4 disks</td>
</tr>
<tr>
<td>No</td>
<td>RAID 5 with 6, 8, or 9 disks</td>
</tr>
<tr>
<td></td>
<td>RAID 50 with 12 disks in 3 subunits of 4</td>
</tr>
<tr>
<td></td>
<td>RAID 50 with 12 disks in 4 subunits of 3</td>
</tr>
<tr>
<td></td>
<td>RAID 50 with 16 disks in 4 subunits of 4</td>
</tr>
</tbody>
</table>
Background Initialization After Power Failure

The 3ware controller detects and handles power failures, using a mechanism that ensures that redundant units have consistent data and parity. When a redundant unit is unexpectedly shutdown, there is a possibility some data and parity may be inconsistent. If a unit or sub-unit of a redundant unit is detected to have been shutdown uncleanly, the unit or sub-unit will change its mode to either ‘Initializing’ or ‘Verifying.’

When the initialization is complete, the unit is guaranteed to be redundant again. The initialization does not erase user data.

This process will take less time if the unit is created with Rapid RAID Recovery enabled during unit creation. See “Rapid RAID Recovery” on page 121.

About Verification

The verify feature confirms the validity of redundant data on redundant units and performs media scans on non-redundant units.

Regular weekly verification is a good idea, as it can provide early warning of a disk drive problem or failure. This allows you to replace drives before they fail.

You can start a verify manually or regular verification can be done automatically by enabling Auto Verify. (See “Starting a Verify Manually” on page 158 and “Using Auto Verification” on page 157.)

During verification, I/O continues normally, but with a slight performance loss, depending on your verify rate setting. You can adjust how much verification will slow performance by setting a rate at which it occurs. (See “Setting Background Task Rate” on page 168.) You can also postpone verification until a scheduled time. (See “Scheduling Background Tasks” on page 169.)
What Verification Does

For a RAID 1 or RAID 10 unit, a verify compares the data of one mirror with the other. For RAID 5, RAID 6, and RAID 50, a verify calculates parity and compares it to what is written on the disk drive. For non-redundant units, it performs a media scan.

Verification checks each sector on a drive. This is important, because day-to-day use of the media may leave many sectors on a drive unused or unchecked for long periods of time. This can result in errors occurring during user operation. Periodic verification of the media allows the disk drive firmware to take corrective actions on problem areas on the disk, minimizing the occurrence of uncorrectable read and write errors.

Verifies can be performed through either 3BM (BIOS) or through 3DM. In addition, they can be scheduled to run at preferred times, through 3DM or through the CLI, or can be run automatically during the Verify schedule window, if scheduling and the Auto Verify feature are enabled.

Verification of Non-Redundant Units

Verification of non-redundant units (single disks, spares, and RAID 0 units) read each sector of a drive, sequentially. If a sector can’t be read, it is flagged as unreadable, and the next time the controller writes to that location, the drive reallocates the data to a different sector.

Verification of Redundant Units

Verification of redundant units reads each sector, working from lowest block to highest block. If verification cannot read data in a sector, dynamic sector repair is used to recover the lost data from the redundant drive or drives; this recovered data is written to the problem sector. This forces the drive to reallocate the defective sector with a good spare sector.

If the verify unit process determines that the mirrored drives are not identical or the parity is not correct, the error is corrected. For RAID 1 and 10, this involves copying the miscompared data from the lower port(s) to the higher port(s) of the mirror. For RAID 5, RAID 6, and RAID 50, this involves recalculating and rewriting the parity that was incorrect. AEN 36 (“Verify detected and fixed data/parity mismatch”) is posted to the Alarms page.

Note: Not verifying the unit periodically can lead to an unstable unit and may cause data loss. It is strongly recommended that you schedule a verify at least 1 time per week. You can take advantage of the the Auto Verify and Basic Verify Schedule to accomplish this.
For RAID 1 and 10, verification involves copying the data from the lower port(s) to the higher port(s) of the mirror. For RAID 5 and RAID 50, this involves recalculating and rewriting the parity for the entire unit. If the unit is not redundant, a file-system check is recommended to correct the issue. If the errors persist and cannot be overwritten from a backup copy, perform a final incremental backup. You will need to replace the defective drive, recreate the unit, and reinstall the data.

How Errors Are Handled
Verification makes use of the same error checking and error repair techniques used during ordinary use of drives configured through 3ware RAID controllers.

When verification encounters an error, the controller typically retries the command. If there are cable CRC errors, there may be multiple retries including downgrade of the UDMA mode. If the error persists and is unrepairable (e.g., ECC errors), an error notification is issued to indicate the problem. (See AEN “0026 Drive ECC error reported” on page 263.)

If the disk drive is part of a redundant unit that is in a redundant state (not degraded or rebuilding), then Dynamic Sector Repair automatically rewrites the redundant data to the error location to force the drive to reallocate the error location. A notification of repair is posted to the alarms list. The result is a restoration of drive and data integrity; the primary and redundant data are again both valid.

If the unit is not redundant, it is recommended that you perform a file-system check to correct the issue. Under Windows, you can do this by right-clicking on the Drive and choosing Properties; then on the Tools tab, click Check Now. If the errors persist and cannot be overwritten from a backup copy, perform a final backup of files that have changed since your last backup. You will need to replace the defective drive, recreate the array, and reinstall the data.

Using Auto Verification
Auto Verify is available as a unit policy that can help insure that a unit is verified on a regular basis. This is important, as it can provide early warning of unstable units and possible data loss.

Auto Verify is enabled on a per-unit basis, and works in conjunction with the Verify Schedule, which is set on a controller-wide basis. Two verify schedules settings are available (Basic and Advanced), and Auto Verify works differently, depending on which is selected.

The Basic Verify schedule (enabled, by default), provides a weekly day and time for Auto Verify to occur. When the Basic schedule is used, Auto Verify will start a verify at the designated time, and run until it has finished.
For users who need more control over when Verify tasks run, an Advanced Verify schedule is also available, which gives you the ability to define seven times during the week when verifications can occur, and allows you to specify the duration of each, effectively creating a series of "schedule windows". This is useful if you want to insure that background tasks such as verification occur during times of low system usage. When you use the Advanced Verify schedule, if a verify does not have time to complete during a scheduled time window, it will pause until the next scheduled time, to resume verifying.

This distinction between Basic and Advanced Verify Scheduling is new in 9.5.1. In previous versions, there was one type of Verify Scheduling, which functioned as the "Advanced" version does in 9.5.1.

Note: Unless you have a specific need for the Advanced Verify schedule, it is recommended that you enable Auto Verify for units, and that you use Basic Verify scheduling, in order to insure weekly verification of your units.

If Auto Verify is disabled for a unit, then verification will only run if you start it manually or in the event of an unclean shutdown.

For more details about how to set the Verify Scheduling option, see “Selecting Advanced or Basic Verify Schedules” on page 172.

Starting a Verify Manually

Verification of units can be done automatically, on a schedule, or can be started manually, as described below. You can manually start a verify through either 3DM or 3BM. (See “Enabling or Disabling Auto Verify for a Unit” on page 115 and “Scheduling Background Tasks” on page 169.)

Note: If the unit has not previously been initialized and you manually select **Verify Unit** in either 3BM or 3DM, the initialization process starts.
To verify a unit through 3DM 2

1. In 3DM 2, choose Management > Maintenance.

2. In the Unit Maintenance section of the Maintenance page, select the unit you want to verify and click Verify Unit.

 3DM 2 puts the selected unit in verifying mode.

 If Basic Verify is selected on the Scheduling page, the verification process begins almost immediately. If Advanced Verify is selected, the unit will not start actively verifying until the next scheduled time.

 A Stop Verify link appears next to the unit on the Maintenance page. If you need to stop the verify process, use this link. (If initialization starts because the unit had not previously been initialized, it cannot be halted, so no Stop Verify link appears.)

To verify a unit through 3BM

1. At the main 3BM screen, select the unit by highlighting it and pressing Enter.

 An asterisk appears in the left-most column to indicate that it is selected.

2. Tab to the Maintain Unit button and press Enter.

3. On the pop-up menu, select Verify and press Enter.

 Verification of the selected unit starts immediately.

Figure 66. Verifying a Unit
Rebuilding Units

Rebuilding is the process of generating data on a new drive after it is put into service to replace a failed drive in a fault tolerant unit.

If a hot spare of the appropriate drive type (SAS or SATA) is specified and a redundant unit degrades, it will be used to automatically replace the failed drive in the redundant unit without intervention on your part. The rebuild process will automatically be launched as a background process at the next scheduled time. If scheduling is turned off, the rebuild process will start almost immediately (within a couple of minutes). If 3DM 2 is running and E-mail notification is enabled, an event notification will be sent to specified users when the unit degrades and again when the rebuild process is complete.

If the Auto Rebuild policy is enabled (see “Setting the Auto Rebuild Policy” on page 82), the firmware will attempt to rebuild a degraded unit with an available drive or a failed drive.

If desired, you can manually replace the drive, rescan the controller, and start the rebuild process. Manual rebuilds can be started from either 3BM, CLI, or 3DM, although the rebuild itself only happens when the operating system is running.

The rebuild process may take less time if Rapid RAID Recovery has been enabled during unit creation. See “Rapid RAID Recovery” on page 121.

Rebuilds on multiple units can take place simultaneously.

If multiple drives are faulted in a RAID 10 configuration, the drives are rebuilt simultaneously. In a 4-drive RAID 10 configuration, up to two drives can be rebuilt. In a 6-drive configuration, up to three drives can be rebuilt. In an 8-drive configuration, up to four drives can be rebuilt. In a 12-drive configuration, up to six drives can be rebuilt.

Note: If both drives in a RAID 10 mirrored set are faulted, the data is not recoverable. Up to half of the drives in a RAID 10 unit can become defective and still have the user data retained, as long as the failed drives are only half of each mirrored pair.

A RAID 5 unit can have one drive fail before becoming inoperable.
A RAID 50 unit can sustain multiple drive failures, as long there is only one failed drive in each RAID 5 set.

A RAID 6 unit can have two simultaneous drive failures, before becoming inoperable.

When a redundant RAID unit is running in Degraded mode and you rebuild it, the missing data is reconstructed from all functioning drives.

Note: If a rebuild fails, check the Alarms page for the reason. If there was an ECC error on the source disk, you can force the rebuild to continue by checking the Overwrite ECC policy on the Controller Settings page in 3DM 2 and then running Rebuild again. This will cause uncorrectable blocks to be rewritten and the data may be incorrect. It is recommended that you execute a file system check when the rebuild completes. Under Windows, you can do this by right-clicking on the Drive and choosing **Properties**; then on the **Tools** tab, click **Check Now**. Under Linux use `fsck /dev/sda1`.

Rebuilding a Unit Through 3DM

When a drive on a unit becomes defective, you replace it with an available drive and then rebuild the unit. If Auto Rebuild is enabled and a drive is available, starting the rebuild is optional as it will start automatically.

To rebuild a unit through 3DM 2

1. If necessary, add a new drive to replace the failed drive. (For details, see “Adding a Drive” on page 135.)

2. In 3DM 2, choose **Management > Maintenance**.

3. In the **Unit Maintenance** section of the Maintenance page, select the degraded unit and click the **Rebuild Unit** button.

4. When a dialog box displays available drives, select the drive you want to replace the failed drive and click **OK**.

Figure 67. Selecting a Drive when Rebuilding

5. If the degraded unit has more than one failed drive (for example, a RAID 10 where both mirrored pairs each have a failed drive), repeat step 3 and step 4 to select another drive.
If rebuild scheduling is not enabled on the **Scheduling** page, the rebuild process begins almost immediately in the background. If rebuild scheduling is enabled, the unit will not start actively rebuilding until the next scheduled time.

Note: If you need to cancel a rebuild, you can do so by using the **Remove Drive** link on the Maintenance page to remove the drive from the unit.

Rebuilding Units through 3BM

When a RAID unit becomes degraded, it is marked as such, and the drive(s) that failed are marked as **Not In Use** in the 3BM screens.

Figure 68 shows an example of how a degraded RAID 5 unit appears in 3BM.

Figure 68. Degraded RAID 5 Array to be Rebuilt

You can start the rebuild of a degraded unit manually in 3BM, or you can let the system boot and allow the rebuild to take place automatically.

The rebuild process will take less time if Rapid RAID Recovery has been enabled during unit creation. See “Rapid RAID Recovery” on page 121

To start the rebuild of a unit through 3BM

1. Reboot the system and start 3BM.

 A red message box informs you that the unit is degraded, and suggests some possible approaches. Figure 69 shows an example of a degraded-array message.
Figure 69. Degraded Disk Array Warning Message

Press a key to continue.

If your degraded unit has a drive indicated as **Not in Use**, the drive may still be usable. Try rebuilding with the **Not in Use** drive intact. Simply select the unit (highlight it and press **Enter**) and then select the **Rebuild Unit** button.

When the **Rebuild** confirmation screen appears, confirm that you selected the correct unit by selecting **OK**.

Press **F8** to save your changes and exit 3BM. The unit will begin rebuilding after the operating system finishes loading.

If the rebuild fails and you have no available drives, do one of the following:

- If your system has hot swap bays, you can replace the failed or **Not In Use** drive and rescan (Alt-R) the unit.
- If your system does not have hot swap bays, power down the system and replace the failed or **Not In Use** drive. Then power on the system and restart 3BM.

Then follow these steps:

1. At the main 3BM screen, highlight an available drive to replace the faulted drive and press **Enter** to select it.

 An asterisk appears in the left most column to indicate the drive is selected.

2. Press **Tab** to select the degraded unit and press **Enter** to select it.

3. **Tab** to the **Maintain Unit** button and press **Enter**.

4. Select **Rebuild** from the pop-up menu and press **Enter**.

Figure 70. Rebuild Option on the Maintain Menu

The Rebuild Disk Array screen displays.

Figure 71. Rebuild Disk Array Screen

5 Press **Enter** to select the **OK** button to continue.

You are returned to the main screen; “Rebuilding” appears next to the unit you selected.

6 Press **F8** to save your changes and exit 3BM.

The unit will begin rebuilding about ten minutes after the operating system finishes loading and the 3ware driver has loaded.
Cancelling a Rebuild and Restarting It with a Different Drive

When you start a rebuild from 3BM, you cannot cancel it in 3BM interface. However, if you have drives in hot swap bays, you can remove and replace the drive, rescan the controller (Alt-R), and then select a new drive to be used in the rebuild. You can also boot the operating system, launch 3DM, and cancel a rebuild by using the Remove Drive link on the Maintenance page.

If your drives are not in hot swap bays and you do not want to boot the operating system and launch 3DM, you can also cancel a rebuild by powering down the system, physically removing a drive, and installing another one that you want to use. Then when you start 3BM, the unit will appear as degraded and you can rebuild it, using the steps described under “Rebuilding Units through 3BM” on page 162.

Note: If you want to pause the rebuild process through 3DM 2, you can do so by setting or changing the rebuild schedule on the Scheduling page. If you set a schedule for rebuilds that does not include the current time, the rebuild process will pause.

Working with the Background Task Mode

Background Task Mode is specifically designed to address the issue of latency, which can cause problems for some applications, by helping you balance the rate of host I/O and efficient completion of background tasks.

About Latency and the Background Task Mode

Latency is the real or perceived delay in response time seen by the host system when accessing some data. For some applications, such as streaming video and audio application, it is important to minimize the latency of read commands, so that users do not perceive a lag when viewing video or listening to audio.

When background tasks are active (for example, rebuild, verify, and initialization), there can be increased latency, and under some circumstances, this can result in a degraded user experience or in an application failure.

You can set the Background Task Mode to minimize latency. This mode monitors and paces the relationship between host I/Os and background tasks. You can set the Background Task Mode to either Adaptive (the default) or Low Latency.

Low Latency mode minimizes the latency (delay) in reading data from the RAID unit by slowing down the background task process. In contrast, Adaptive mode allows the firmware to adjust the interaction of background

wwwlsi.com/channel/products
tasks with host I/Os to maximize the speed of both host I/O and background
tasks.

If latency is not an issue in the applications you use, then using the Adaptive
Background Task Mode will probably meet your needs and will result in
background tasks that complete faster.

Relationship of Task Mode and Task Rate

The Background Task Mode works in conjunction with the Background Task
Rate. The settings are shown in Figure 72.

Figure 72. Background Task Settings on Controller Settings page

<table>
<thead>
<tr>
<th>Background Task (Controller ID:0)</th>
<th>Task Rate</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebuild/Migrate</td>
<td>5 4 3 2 1</td>
<td>Adaptoe Low Latency</td>
</tr>
<tr>
<td>Verify</td>
<td>5 4 3 2 1</td>
<td>Adaptoe Low Latency</td>
</tr>
</tbody>
</table>

Background Task Rate lets you set the relative performance of background
tasks in relation to host I/O activity on a scale of **1 to 5**, with 5 being the
fastest background task and slowest I/O, while 1 is the fastest I/O and the
slowest background task, as shown in Figure 72. Separate settings are
available for Rebuild/Migrate and for Verify. (Initialization occurs at the
Rebuild/Migrate rate.)

- **5** = fastest background task; slowest host I/O
- **4** = faster background task; slower host I/O
- **3** = balanced between background tasks and host I/O
- **2** = faster host I/O; slower background task
- **1** = fastest host I/O; slowest background task

If you set the **Background Task Mode** to **Low Latency**, it slows down the
background task process in the context of the current Task Rate setting, with a
graduated pacing of host I/O versus background task I/O, 2 through 5.

Important: It is recommended that if you use the Background Task Mode of
Low Latency, you always set the Background Task Rate to at least **2** on the
scale of 1 to 5. When used in conjunction with a rate of **1** (fastest host I/O;
slowest background task), Low Latency Mode can create a situation in which
background tasks never complete, if there is continuous host I/O activity on
the unit.

If you do select **Low Latency** when the Rate is set to **1**, 3DM 2 will display a
warning, and will then continue to display a recommendation to change it
until you change either the Rate to **2** or greater, or until you change the Mode
to **Adaptive** (Figure 73).
Table 13 provides an overview of the impact of selecting different Task Rate and Task Mode settings.

Table 13: Selecting Appropriate Background Task Rate and Mode

<table>
<thead>
<tr>
<th>Your priority</th>
<th>Rebuild Task Rate</th>
<th>Task Mode</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastest rebuild time</td>
<td>5</td>
<td>Adaptive</td>
<td>Potential for higher latency on host I/Os</td>
</tr>
<tr>
<td>Balanced host I/O and rebuild tasks</td>
<td>3</td>
<td>Adaptive</td>
<td>Default setting</td>
</tr>
<tr>
<td>Minimized host I/O latency</td>
<td>2</td>
<td>Low Latency</td>
<td>Background tasks will complete, but will be slow when there are host I/Os</td>
</tr>
<tr>
<td>Minimum host I/O latency</td>
<td>1</td>
<td>Low Latency</td>
<td>Background tasks may never finish when there are continuous host I/Os. For example, a rebuild may never complete.</td>
</tr>
</tbody>
</table>
Setting the Background Task Mode

You set the Background Task Mode on the 3DM 2 Controller Settings page. Settings are available for both Rebuild/Migrate and for Verify. By default, both Background Mode settings are set to Adaptive.

To change the Background Task Mode

1. Choose Management > Controller Settings from the menu bar in 3DM 2.
2. In the Background Task section of the Controller Settings page, select the Background Mode you want for Rebuild/Migrate and for Verify.

Figure 74. Background Task Mode on the 3DM 2 Settings page

The page refreshes and a message appears at the top to confirm the changes you make.

Setting Background Task Rate

You can set the relative performance of background tasks (initializing, rebuilding/migrating, and verifying) in relation to normal I/O activity (reading and writing to disk).

Controllers can have separate settings for Rebuild/Migrate Rate and Verify Rate. (Initialization occurs at the Rebuild rate.)

To change the background task rate

1. Choose Management > Controller Settings from the menu bar.
2. In the Background Task Rate section of the Controller Settings page, select one of the five radio buttons to indicate the relative task rate for Rebuild and Verify Tasks.
The furthest left buttons set the firmware to the fastest rebuild and verify settings. This means that maximum processing time will be given to rebuilds or verifies rather than I/O. The furthest right buttons set the firmware to the slowest rebuild and verify settings, giving maximum processing time to I/O.

After you select one of the radio buttons, the page refreshes, and a message at the top confirms the change you have made.

Background Task Prioritization

Although migration tasks follow the same schedule as rebuild and initialization tasks, they are always given the highest priority because of the controller and disk resources required during migration.

Once a unit is put into the migration state, it must be allowed to complete the process. While migrating, rebuilds or verifies to the unit are not permitted.

Rebuilding preempts verify operations. If a unit requires rebuilding, that process will take place before the unit is verified.

Controllers can work on multiple units at the same time. This means that if you have both a redundant unit and a non-redundant unit, the verification of the redundant unit and the media scan of the non-redundant unit will occur at the same time.

Scheduling Background Tasks

You can set up scheduling windows for when background tasks occur so that routine maintenance of storage media occurs when it will be least likely to interfere with day-to-day work on the system (peak I/O times). By creating and using schedules, you can specify when active rebuilding, migrating, verifying, and testing of units should occur. For example, you might wish these tasks to occur at 2 AM each day, or on weekends.

Note: Initialization follows the rebuild/migrate schedule. The default setting for both is to ignore the schedule.
Rebuild/migrate, verify, and self-test tasks are scheduled separately, but in a very similar way. You can perform the following scheduling tasks:

- Viewing Current Task Schedules
- Turning On or Off Use of a Rebuild/Migrate Task Schedule
- Selecting Advanced or Basic Verify Schedules
- Removing a Task Slot from a Schedule
- Adding a New Task Schedule Slot
- Selecting Self-tests to be Performed

Tip: If you want to change a task schedule window, you first remove the schedule item and then add it back with the desired day, time, and duration.

Note: Setting up the scheduling window does not actually request background tasks. It simply specifies when they can run. For more information about the background tasks themselves, see “Background Tasks” on page 151.

You can also set the rate at which background tasks are performed compared to I/O tasks. For more information, see “Setting Background Task Rate” on page 168.

Scheduled Task Duration

If a rebuild does not complete in a scheduled time block, it will pause and continue where it left off at the next scheduled time block.

This is also true for verify, if you use the Advanced Verify schedule. If you use the Basic Verify Schedule, verifies will run to completion, and are not limited to a specific duration.

Note: When using Basic Verify Schedule and Auto Verify, if the system is off at the scheduled time, a Verify will start when the system is powered on, if it has been longer than a week since a verify last completed.
Viewing Current Task Schedules

You can see the current schedules for background tasks on the Scheduling page.

To view the current task schedule

1. Choose Management > Schedule from the menu bar.

 The Scheduling page appears, showing the schedule for Rebuild Tasks. (Migration and initialization tasks follow the Rebuild Task schedule.)

2. To view Verify Tasks or Self-test Tasks, select it from the drop-down list at the top of the page.

Figure 76. Selecting Task Schedules to View

Turning On or Off Use of a Rebuild/Migrate Task Schedule

Turning on the schedule for Rebuild/Migrate tasks forces initializations, rebuilds and migrates to be performed only during the time specified by the schedule. If the schedule is not turned on, rebuilds, migration, and initialization can happen whenever they are required or are manually started.

There may be times when you want to disable scheduled rebuild/migrate tasks, so that you can rebuild or migrate a unit right away, without waiting for the next scheduled time. In this case, you can disable the schedule, as described below.
You can easily disable a current Rebuild/Migrate schedule without deleting the schedule itself.

To turn on or off use of the current Migrate/Rebuild task schedule

1. Choose **Management > Schedule** from the menu bar.

The Scheduling page appears, showing the schedule for Rebuild/Migrate Tasks.

2. In the Schedule Rebuild Tasks section, select the appropriate setting: **Follow Schedule** or **Ignore Schedule**.

 The illustration below shows this setting for the rebuild task schedule.

 Note: Self-test schedules cannot be turned off in this way. To disable self-tests you must either remove all schedule times, or uncheck the tests listed in the **Tasks** column. For more information, see “Selecting Self-tests to be Performed” on page 174.

Selecting Advanced or Basic Verify Schedules

You cannot ignore a verify schedule. You can only select either Basic or Advanced as the verify schedule.

The Basic verify schedule is selected by default and is scheduled to run once a week at Friday 12 am. You can change the time at which it runs on the Schedule page in 3DM 2 or on the Policy screen in 3BM.

The Advanced verify schedule is similar to the Rebuild/Migrate schedule and has seven scheduling slots. For details about the functioning of Basic and Advanced verify schedules, see “Using Auto Verification” on page 157.

To select Basic or Advanced verify schedule

1. Choose **Management > Schedule** from the menu bar.

The Scheduling page appears, showing the schedule for Rebuild/Migrate Tasks.
2. From the drop-down menu, select **Verify Tasks**.
 The Schedule Verify Tasks page appears.

3. Select either **Basic** or **Advanced** as the verify schedule.

Removing a Task Slot from a Schedule

By default, seven daily task schedule slots are defined, each starting at 12:00 am and running for 24 hours.

A maximum of seven schedule slots can be defined. When seven schedule slots are shown for any of the tasks, you must remove a schedule slot before you can add another.

To remove a task slot from a schedule

1. Choose **Management > Schedule** from the menu bar.
 The Scheduling page appears, showing the schedule for Rebuild/Migrate Tasks.
 To view Verify Tasks or Self-test Tasks, select one from the drop-down list at the top of the page. To view the seven verify schedule slots, select Advanced.

2. Select the checkbox next to the schedule(s) you want to remove.

3. Click the **Remove Checked** button.
 The page refreshes, and the selected schedule slot(s) are removed. You can now add another schedule slot or slots.

Adding a New Task Schedule Slot

When you add a rebuild/migrate or verify task schedule, you specify the day of the week, time, and duration for the task. For self-test schedules, you specify day and time, but not duration. (Duration is not required for self-tests.)

Depending on the schedule and system workload, background tasks may require more than one scheduled duration to complete.

To add a task schedule slot

1. Choose **Management > Schedule** from the menu bar.
 The Scheduling page appears, showing the schedule for Rebuild/Migrate Tasks.

2. To view Verify Tasks or Self-test Tasks, select it from the drop-down list at the top of the page.
3 Scroll to the section of the Scheduling page that shows the task you want to add.

4 In the fields at the bottom of the section, select the Day, Time, and Duration for the task.

5 Click the **Add New Slot** button.
 The page refreshes and the new schedule is added to the list.

Note: The scheduled tasks can be added in any order. For example a new task scheduled for Tuesday (slot-2) will preempt the task originally scheduled for Wednesday (slot-1).

Selecting Self-tests to be Performed

For 3ware RAID controllers (9550SX and newer), you can check the SMART thresholds for drives. (For more information see the 3DM 2 Reference section, “Scheduling page” on page 216.)

Initially, these tests are set to run every 24 hours. You can change the schedule for when they are run, and you can disable the tests, if you prefer not have to have them performed.

Note: These tasks will only be run during scheduled times if they are checked in the **Schedule Self-tests** section of the Scheduling page. If neither of the tasks is checked, self-tests will never run, even if you have scheduled time slots set.

To select self-tests to be performed

1 Choose **Management > Schedule** from the menu bar.
 The Scheduling page appears, showing the schedule for Rebuild Tasks.

2 Select Self-test Tasks from the drop-down list at the top of the page.

3 Check the boxes next to the self-tests you want to be performed.
To disable self-tests

Unlike scheduling of rebuilds and verifies, scheduling of self-tests is always enabled.

To disable self-tests you must either remove all schedule times, or uncheck the tests listed in the Tasks column.
Maintaining Your Controller

This section contains instructions for how to perform tasks that help you maintain your controller, including:

- Determining the Current Version of Your 3ware Driver
- Updating the Firmware and Driver
- Downloading the Driver and Firmware
- Updating the Firmware Through 3DM 2
- Updating the 3ware Driver Under Windows
- Updating the 3ware Driver Under Red Hat or Fedora Core
- Updating the 3ware Driver Under SUSE
- Viewing Battery Information
- Testing Battery Capacity

Determining the Current Version of Your 3ware Driver

You can view controller and driver information in several different ways:

- Using 3DM 2 you can see both the driver and firmware versions (see the “Controller Summary page” on page 201)
- Using 3BM you can see the firmware version (see “Displaying Information About the Controller and Related Devices” on page 59)
- Using the CLI you can see both the driver and firmware versions (see 3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0)
- Under Linux, you can type the following command if you have a 2.4 kernel or earlier:
  ```bash
cat /proc/modules/scsi/3w-sas/*
```
 where the asterisk (*) represents controller number.
 If you have a 2.6 kernels with sysfs, type the following command:
  ```bash
cat /sys/class/scsi_host/<hostid>/stats
```
where <hostid> is usually host0, unless other SCSI devices are available, in which case it may be host1 or higher.

If you have a 2.6 kernel without sysfs, type the following command:

```
dmesg | grep 3w
```

(dmesg can also be used with earlier kernel versions.)

- Under Windows, you can follow the first 5 steps under “Updating the 3ware Driver Under Windows” on page 181.

Updating the Firmware and Driver

![Important]

Important: Updating the firmware can render the device driver and/or management tools incompatible. Before you update the firmware on your controller, please follow these recommendations:

1. Back up your data.
2. Make sure you have a copy of the current firmware image so that you can roll back to it, if necessary.
3. Close all applications.

This section details several ways to update the firmware and driver for the 3ware RAID controller, depending upon operating system.

Before starting the update of either driver or firmware, you will want to make sure you have the latest files. For details, see “Downloading the Driver and Firmware” on page 178.

To update the firmware

- The 3ware CD contains a bootable DOS firmware update program that will work for most PC-based systems. See “Updating the Firmware Through DOS Using the 3ware Bootable CD” on page 180.

 You can download the latest version of the CD from:

 http://www.lsi.com/channel/ChannelDownloads

- All supported operating systems can update the firmware through 3DM. For details, see “Updating the Firmware Through 3DM 2” on page 179.

- All supported operating systems can update the firmware through CLI. For details, see *3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0*.

To update the driver

- Windows users can update the driver by using the 3ware Device Driver Install Wizard, or by using the Windows Device Manager. For more
Maintaining Your Controller

information, see “Updating the 3ware Driver Under Windows” on page 181.

• Linux users can update the driver at the command line. For details see:
 • Updating the 3ware Driver Under Red Hat or Fedora Core
 • Updating the 3ware Driver Under SUSE

Downloading the Driver and Firmware

You can download the latest drivers and firmware from the LSI website, at http://www.lsi.com/channel/ChannelDownloads. You can also download the 3ware CD ISO file and create a CD.

To download the driver or firmware

1 On the LSI website go to http://www.lsi.com/channel/ChannelDownloads.

2 Select RAID Controllers as the Product Family.

3 Select your product from the drop-down list on the right.

4 When the page has refreshed, locate the item you want to download and click the link to the file.

 Depending on the item you selected, you may see either .zip (for Windows) or .tgz (for Linux) files to download.

 Note: If using Winzip or another Windows utility to extract the Linux file, use the .zip version instead of the .tgz version. Otherwise the files will not be compatible with Linux.

5 In the dialog box that appears, click Save to save the file to disk.

6 Uncompress the file to extract the driver or firmware files to a local directory. (Note that the firmware will not fit on a floppy diskette.)

 (Make note of the absolute path to the local directory.)
7 Turn to the driver section for your operating system:
 • For Windows, turn to page 181
 • For RedHat Linux, turn to page 183
 • For SUSE Linux, turn to page 185

Or, to update the firmware, turn to
 • “Updating the Firmware Through 3DM 2” on page 179 (for any operating system with a Windowing user interface)
 • “Updating the Firmware Through DOS Using the 3ware Bootable CD” on page 180

To download the 3ware CD
1 On the LSI website go to http://wwwlsi.com/channel/ChannelDownloads.
2 Select RAID Controllers as the Product Family.
3 Select your product from the dropdown on the right.
4 When the page has refreshed, locate the ISO for the CD (in the Software section) and click the link to the file.
5 In the dialog box that appears, click Save to save the file to disk.
6 After the download has completed, burn the ISO to a CD.

Updating the Firmware Through 3DM 2

You can use 3DM 2 to update the 3ware RAID controller firmware for any operating system that has a graphical user interface such as Windows or X Windows.

To update the firmware through 3DM 2
1 Download the firmware update from the LSI website. For details, see “To download the driver or firmware” on page 178.
2 In 3DM 2, navigate to Management > Controller Settings.
3 In the Update Firmware section of Controller Settings page, browse to the location where you have saved the downloaded firmware update. The update name will be something like promxxx.img.
4 Click Begin Update.
The Compatibility Information window appears.
5 Click Proceed Update.
The 3ware RAID controller firmware is updated.

6 Restart your system so that the firmware image will take effect.

Updating the Firmware Through DOS Using the 3ware Bootable CD

The 3ware CD can function as a bootable DOS firmware update program that will work for most PC-based systems.

To update the firmware through DOS

1 Start your computer with the 3ware CD in your CD-ROM drive and the BIOS set to boot from CD-ROM.

2 At the Welcome screen type:

 `firmware`

3 At the next screen select the controller type to upgrade by typing the ID number (1,2,...) next to the name of the controller or Q, to quit. For example:

 1 - 9750
 2 - 9690

 (You can only install one controller at a time, you will need to repeat this procedure for each controller.)

 The update program is loaded.

4 To continue, type:

 `y`

5 If multiple controller cards are installed, select the ID number of the card to upgrade, otherwise continue to next step. You must select the same controller type selected in step 3, otherwise the upgrade will fail.

 The update program lists the version of your present firmware.

6 To continue, type:

 `y`

 The program checks that the update program version of the firmware is compatible. If it is, it begins installing the firmware. This will take 1 to 3 minutes. Do not power off your computer until the firmware finishes updating.

7 If multiple controllers are being installed, repeat steps 3-5 for the next controller.

8 Type q to quit, remove the bootable CD and reboot your system.
Updating the 3ware Driver Under Windows

The easiest way to update the driver for Windows is to use the 3ware Device Driver Install Wizard. You can run it from the 3ware CD, or you can download the installer from the website, as described under “Downloading the Driver and Firmware” on page 178.

To update the 3ware driver with the 3ware Device Driver Install Wizard

1. Backup any critical data prior to updating the 3ware driver.
2. Log in to your system as system administrator.
3. If you have the 3ware CD, insert the 3ware CD into your CD-ROM drive. Click Agree at the LSI license agreement.
 When the 3ware menu appears, click Install Windows Drivers.
 The installer will select the correct driver for your Windows operating system and open the 3ware Device Driver Installation Wizard.
4. If you downloaded the Device Driver Install Wizard from the LSI website, unzip the file to a directory, and then double-click that file to open the 3ware Device Driver Installation Wizard.
5. When the 3ware Device Driver Installation Wizard opens, click Next.

Figure 77. 3ware Device Driver Installation Wizard
After you click **Next**, the following screen appears. The green checkmarks indicate successful installation of the driver. If unsuccessful, there will be a red checkmark.

Figure 78. Final Installation Screen

6 Click **Finish** to exit the installer.

To update the 3ware driver through the Windows Device Manager

In addition to using the 3ware Device Driver Installation Wizard, you can also install the drivers through the Windows Device Manager.

1 Download and extract the driver files, as described under “Downloading the Driver and Firmware” on page 178.

2 Backup any critical data prior to updating the 3ware driver.

3 Log in to your system as system administrator.

4 From the **Start** menu, open the **Control Panel** window.

5 In the **Control Panel** window, double-click on the **System** icon.

6 Click on the **Hardware** tab and then click on the **Device Manager** tab.

7 Open the **SCSI and RAID Controllers** selection.

8 Locate and double-click on the applicable **3ware 9750 RAID Controller**. A dialog box for the Controller Properties appears.
9 Click the **Driver** tab, and then click the **Update Driver** button.

10 Step through the Hardware Update Wizard screens.
 Select the options that allow you to specify where the driver files exist.
 If you are asked whether you want to connect to Windows Update, select “No, not this time” and click **Next**.

11 If the **Digital Signature Not Found** screen appears, click **Yes** to continue and follow the instructions to complete the driver installation.

12 When the **Completing the Hardware Update Wizard** screen appears, click **Finish**.

13 If you are prompted to restart the system, do so.
 Shortly after clicking **Finish**, or after the machine reboots, the first screen of the Hardware Update Wizard appears again, informing you that Windows has found new hardware.

Updating the 3ware Driver Under Red Hat or Fedora Core

The following steps describe how to update the 3ware driver under Red Hat.

Note: Backup your original driver before updating in case you need to revert back to it. However, you will not be able to revert back to the original driver if you are booting from that unit.

To update the 3ware driver under Red Hat

1 Download and extract the driver, as described under “Downloading the Driver and Firmware” on page 178.

2 Backup any critical data prior to updating the 3ware driver.

3 Change the directory to the location with the extracted driver.

4 Copy the files to the appropriate directory.
 (In the commands below, replace `<version>` with the applicable Red Hat or Fedora Core version, such as ws5 or fc11, and replace `<kernel string>` with the applicable kernel, for example 2.6)

 Note: The name of the module you will copy (`3w-sas.*`) varies, depending on the kernel; however you will always copy it to a file named `3w-sas.ko` for 2.6 kernels

 For Red Hat or Fedora Core Uniprocessor
Maintaining Your Controller

5 For 2.6 Kernels, add the following line to
/etc/modprobe.conf.
alias scsi_hostadapter 3w-sas

6 Complete the upgrade by upgrading the initial ramdisk.
Change the directory to the boot directory:
cd /boot
Run mkinitrd by entering the following:
(In the commands below, replace <kernel string> with the applicable kernel, for example 2.4.20-8)
For Red Hat or Fedora Core Uniprocessor
mkinitrd -v -f initrd-<kernel string>.img <kernel string>
For Red Hat SMP
mkinitrd -v -f initrd-<kernel string>smp.img <kernel string>smp
For Red Hat Bigmem
mkinitrd -v -f initrd-<kernel string>bigmem.img <kernel string>bigmem
For Red Hat Xen
mkinitrd -v -f initrd-<kernel string>xen.img <kernel string>xen

7 If you are using lilo, run lilo to update to the boot loader.
You should see a printout of kernels that are able to boot on this system after running lilo.
Updating the 3ware Driver Under SUSE

The following steps describe how to update the 3ware driver under SUSE.

Note: Backup your original driver before updating in case you need to revert back to it. However, you will not be able to revert back to the original driver if you are booted from that unit.

To update the 3ware driver under SUSE

1. Download and extract the driver, as described under “Downloading the Driver and Firmware” on page 178.
2. Backup any critical data prior to updating the 3ware driver.
3. Change the directory to the location with the extracted driver.
4. Copy the files to the appropriate directory.
 (In the commands below, replace `<version>` with applicable SUSE version, such as su10)
 Replace `<kernel string>` with applicable kernel (i.e.: 2.6.16.x)

 For SUSE Uniprocessor (2.6 kernels)
   ```bash
   cp <version>/3w-sas.ko /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```

 For SUSE SMP (2.6 kernels)
   ```bash
   cp <version>/3w-sas.smp /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```

 For SUSE high memory systems (2.6 kernels)
   ```bash
   cp <version>/3w-sas.big /lib/modules/<kernel string>/kernel/drivers/scsi/3w-sas.ko
   ```
5. Run `/sbin/depmod -a`
6. Make sure the file `/lib/modules/<kernel string>/modules.dep` contains an entry for 3w-sas. If not, add it after the 3w-xxxx entry.
7. Complete the upgrade by upgrading the initial ramdisk. (Skip to step 10 if you prefer to use `insmod 3w-sas.ko`, instead.)
 Make sure the file `/etc/sysconfig/kernel` contains the following line:
   ```bash
   INITRD_MODULES="3w-sas"
   ```
8 Run `mkinitrd`.

9 If you are using lilo, use lilo to update to the boot loader.
 You should see a printout of kernels that are able to boot on this system
 after running lilo.

10 Reboot, if booted from the 3ware controller. Otherwise, continue with
 step 11.
 The driver is now updated.

11 Stop the current driver module, if loaded:
 `rmmod 3w-sas`

12 Load the new driver module:
 `modprobe 3w-sas`

 If the new driver fails to load properly, confirm that you used correct driver. If
 your kernel or SUSE version is not supported, you will need to compile your
 own driver. For more information, search the LSI Knowledge Base for
 keyword 14546 (use the Advanced Search) at

Viewing Battery Information

The Battery Backup Unit (BBU) is an add-on card that can be attached to
3ware 9750 RAID controllers to supply power from a battery pack in the
event of a system power loss. This allows the controller to use write-caching
for optimal performance and to preserve data in the event of a system power
failure. When fully charged, the battery preserves the contents of the cache
memory for up to 72 hours. When power is restored, the cached write data is
written to the disks.

You can see information about a battery backup unit attached to your
controller in both 3DM 2 and 3BM.

Note: When the BBU status is not “Ready,” write caching is automatically disabled
on all units attached to the controller.
To view information about a BBU in 3DM 2

- On the menu bar, choose Monitor > Battery Backup.

 The Battery Backup page appears, on which you can see details and status about the unit. This page is refreshed every 30 seconds.

 For details about the fields on this page, see “Battery Backup page” on page 229.

To view information about a BBU in 3BM

- At the main 3BM screen, tab to the Information button and press Enter.
 On the pop-up menu, select Battery Backup and press Enter.

 The Battery Backup Unit screen appears.
 The fields on this screen are the same as those available through 3DM.
 For details about the fields, see “Battery Backup page” on page 229.

Testing Battery Capacity

Batteries in the BBU need to be replaced periodically. A battery test should be run every four weeks in order to get a reliable estimate of battery capacity, and to determine when it needs to be replaced.

The battery test is used to measure the battery’s capacity to back up write data. In order to make a reliable estimate of battery capacity, the BBU pre-charges the battery before it proceeds with a full discharge cycle. The battery is automatically charged again after the test completes. The whole process usually takes between 8 and 12 hours.

While running the battery test and until charging is completed, write cache is temporarily disabled.

For how to replace the battery, see the installation guide that came with your battery backup unit.
To test the battery in a BBU in 3DM 2

1. On the menu bar, choose Monitor > Battery Backup.
2. On the Battery Backup page, click the Test Battery Capacity link.

Figure 79. Battery Backup Information Screen in 3DM 2

3. When a message cautions you that testing the battery will disable the BBU for up to 24 hours, click OK to continue.

After the battery test starts, you will see the voltage start dropping; eventually the battery voltage will say "LOW". This is part of the battery test. After the voltage drops to a point, it will start charging again, and the status will change to “Charging.” Eventually, the battery voltage will say “OK” again.

Figure 80. BBU Information Screen While Battery is Testing

To test the battery in a BBU in 3BM

1. At the main 3BM screen, tab to the BBU button and press Enter.
2. Tab to Test Battery Capacity and press Enter.
Figure 81. Battery Backup Information Screen in 3BM

Note: This screen will refresh every 30 seconds to reflect the latest status.
Enclosure Management

3ware enclosure management features let you view the status of chassis and enclosure hardware, such as fans, power supplies, and temperature sensors through 3DM 2, and locate individual hardware components by blinking LEDs associated with them.

For 3ware 9750 RAID controllers, enclosure management features are available for supported enclosures that provide enclosure services through SCSI Enclosure Services 2 (SES-2). These enclosures may provide services through:

- Enclosures with expanders
- Enclosures employing the AMI 9070 or 9072 backplane controller chip, and with a SAS cable connection supporting the sideband I²C protocol between the 3ware RAID controller and the backplane

A list of supported enclosures is available at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

Depending on the manufacturer of your enclosure, you may see variations in the features supported by your enclosure from the ones described in this chapter. For details about what features are supported, refer to the documentation for your enclosure.

This chapter describes how to view and locate enclosure-specific hardware. For information about identifying drives in an enclosure, see “Locating a Drive by Blinking Its LED” on page 145.

Details about enclosure management are organized into the following topics:

- Viewing a List of Enclosures
- Checking Enclosure Component Status
- Locating a Specific Enclosure Component
- Working with Enclosure Alarms
- Downloading an Enclosure Diagnostic Log
Viewing a List of Enclosures

If you have multiple enclosures attached to your 3ware RAID controller, you can see a list of them.

To see a list of enclosures in 3DM 2

- Choose Monitor > Enclosure Support from the menu.

The Enclosure Summary screen appears.

Figure 82. Enclosure Summary page

To see details about a particular enclosure, click the link in the ID column. (See “Checking Enclosure Component Status” on page 192)

To see a list of enclosures in 3BM

1. On the main 3BM screen, Tab to Information and press Enter.
2. On the pop-up menu, select Enclosures and press Enter.

The Enclosure Information page appears, with information about enclosure components displayed in the top section, and details about the slots in the selected enclosure displayed in the bottom section.

For an explanation of statuses for the different components, see the status topics starting under “Fan Status” on page 194.

3. On the Enclosure Information page, use the arrow keys to move from one enclosure to another. You can use the - and Shift+ keys to hide or show details about an enclosure, if desired.

Tip: You can scroll both sections of the Enclosure Information page to bring additional enclosure information or enclosures into view. Press Tab to move between the two sections.
Checking Enclosure Component Status

If your enclosure supports enclosure services, you may be able to check the status of enclosure components such as power supplies, fans, slots, drives, and temperature sensors.

To check the status of components in your enclosure in 3DM 2

1. Choose Monitor > Enclosure Support from the menu.
2. On the Enclosure Summary page, click the blue Enclosure ID link for the enclosure for which you want to see details.

The Enclosure Details page appears.

Explanations of the statuses for the various enclosure components are provided on the next few pages.
Figure 84. Enclosure Details page

To check the status of components in your enclosure in 3BM

When you view the list of enclosures in 3BM, the status information is available on the same screen. For details, see “To see a list of enclosures in 3BM” on page 191.

www.lsi.com/channel/products 193
Fan Status

The following is a list of possible fan statuses:

- **OK.** The fan is optimal and is functioning normally.
- **Off.** The fan is off.
- **Failure.** The fan is present, but is malfunctioning.
- **Not Installed.** There is no fan installed.
- **Unknown.** The status of the fan is not reportable.

Temp Sensor Status

Below is a list of possible temperature sensor statuses.

Note that the temp sensor status indicates the temperature of the enclosure or backplane. Drive temperature, if supported, is available on the Drive Details page.

- **OK.** The temperature sensor is functioning normally.
- **Failure.** The temperature sensor is present, but is malfunctioning.
- **Not Installed.** There is no temperature sensor installed.
- **Unknown.** The status of the temperature sensor is not reportable.
- **Over Temp Warning.** Temperature is higher than normal operating temperature.
- **Over Temp Fail.** Temperature is higher than safe operating temperature.
- **Under Temp Warning.** Temperature is colder than normal operating temperature.
- **Under Temp Fail.** Temperature is lower than safe operating temperature.

Power Supply Status

The following is a list of possible power supply statuses.

- **OK.** The power supply is functioning normally.
- **Failure.** The power supply is present, but is malfunctioning.
- **Off.** The power supply is off.
- **Not Installed.** There is no power supply.
- **Unknown.** The status of the power supply is not reportable.
Slot Summary

The following is a list of possible slot statuses:

- **OK.** The slot is functioning normally.
- **Inserted.** A drive has been inserted in the slot.
- **Ready to Insert.** The slot is ready to accept a drive.
- **Ready to Remove.** The drive in the slot can be removed.

Locating a Specific Enclosure Component

If you have a supported enclosure and the identify feature is supported by your enclosure manufacturer, you can locate power supplies, fans, and temperature sensors by blinking the leds associated with them. This can help you quickly identify which component needs to be checked or replaced. The specific components that can be located in this way will depend on your enclosure.

For details about how to locate a drive by blinking an LED, see “Locating a Drive by Blinking Its LED” on page 145.

To locate a fan, power supply, or temperature sensor

1. Choose **Monitor > Enclosure Support** from the 3DM 2 menu.
2. On the Enclosure Summary page, click the blue Enclosure ID link for the enclosure you are interested in.
3. Check the **Identify** box next to the component you want to locate.
4. Examine the enclosure for the blinking LED.
Working with Enclosure Alarms

Note: Enclosure alarm support is based on the SES protocol.

9750 controllers support enclosure audio alarm for enclosures with expanders and I²C backplanes that support the SES-2 protocol.

However, enclosure alarm support depends on the capabilities of the specific enclosure or backplane. Not all enclosures provide an audio alarm, and for those that do, not all provide both the On/Off and Mute/Unmute feature.

For details about what specific features are provided with your enclosure, see the documentation that came with the enclosure or backplane.

Tip: Be sure you have the most recent firmware for the enclosure. If the alarm feature does not work as anticipated, contact the manufacturer for updated firmware.

Supported enclosures are listed at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

Additional support information is available in the LSI Knowledge Base, at this website: https://selfservice.lsi.com/service/main.jsp.

Some enclosures provide an alarm that turns on when a RAID unit becomes degraded or goes offline, or when a drive has failed. (Specific use of the alarm feature may vary somewhat, depending on the enclosure.)

If you have an enclosure with an audio alarm, you can turn the alarm **Off** when it sounds, using 3DM 2, 3BM, or the CLI. If the enclosure supports muting, you can also mute and unmute the alarm in 3DM 2 or the CLI.

Note that you cannot turn an enclosure alarm **on**. Alarms are only turned on (activated) when an error condition has been detected for a drive or RAID unit. To view any error conditions that may have caused the enclosure alarm to go off, see the **3DM 2 Alarms** page. Status information about supported enclosures is also available on the **3DM 2 Enclosure Details** page. (You can also use the CLI **/cx show alarms** command, or check the status of the RAID unit in 3BM.)

Muting an alarm provides the ability to silence the alarm, without turning it off completely. You can also set the alarm to Mute in advance, if you do not want the alarm to sound. When the alarm audibility is set to **Mute** and the alarm turns on, the word **Activated** continues to display in the Status column of the Audio Alarm Summary on the 3DM 2 Enclosure Details page, as shown in Figure 85.
Controlling an Enclosure Alarm In 3DM 2

In 3DM 2, you can turn off an enclosure alarm that has activated, or you can choose to mute or unmute it.

To mute, unmute, or turn off an enclosure alarm

1. Choose Monitor > Enclosure Support from the menu bar in 3DM 2. The Status column indicates Alarm Activated when the alarm has turned on, as shown in Figure 86.

 Figure 86. Enclosure Summary shows Alarm Activated

2. On the Enclosure Summary page, click the blue Enclosure ID link for the enclosure to go to the Enclosure Details page.
Figure 87. Enclosure Details page with enclosure alarm On

In the Audio Alarm Summary section of the Enclosure Details page, do one of the following:

To turn off the alarm, change the State to Off.
This deactivates and silences the audio alarm.

To mute the alarm, change the Audibility to Mute.
This silences the alarm without deactivating it. Activated remains in the Status field.

To unmute the alarm, change the Audibility to Unmute
This causes the alarm to sound again, if it is still active.

Turning Off an Enclosure Alarm in 3BM

In 3BM, you can turn off enclosure alarms that have activated.

To turn off enclosure alarms in 3BM

1. On the main 3BM screen, Tab to Information and press Enter.
2. On the pop-up menu, select Enclosures and press Enter.
The Enclosure Information page appears, with information about enclosure components in the top section, and details about the slots in the selected enclosure in the bottom section.
To turn off any alarms that are activated to all enclosures attached to the controller, press **F5**.

Downloading an Enclosure Diagnostic Log

The enclosure diagnostic log may be requested by 3ware Customer Support to help troubleshoot problems on your controller. You can download this diagnostic log from the Enclosure Details page.

To download the diagnostic log

1. In 3DM 2, choose **Monitor > Enclosure Summary** from the menu bar.

2. Make sure the correct controller is displayed in the **Select Controller** field in the menu bar.

3. On the Enclosure Summary page, click the **ID** link of the desired enclosure.

 The Enclosure Details page for the selected controller appears.

4. Click on the **Diagnostic Text** link.

5. When the Save or Open dialog box appears, navigate to where you want to save the log and click **OK**.
3DM 2 Reference

This section includes details about the fields and features available on the pages you work with throughout 3DM 2. It is organized by 3DM 2 page, as the pages are organized on the 3DM 2 menu bar.

- Controller Summary page
- Controller Details page
- Unit Information page
- Unit Details page
- Drive Information page
- Drive Details window
- Controller Phy Summary page
- Controller Settings page
- Scheduling page
- Maintenance page
- Alarms page
- Battery Backup page
- Enclosure Summary page
- Enclosure Details page
- 3DM 2 Settings page
Controller Summary page

The Summary page appears after you first logon to 3DM 2, or when you click the Summary link in the menu bar.

This page provides basic information about each 3ware RAID controller in your system. To see details about the units in a controller, click the link in the ID column.

ID. The ID that the operating system assigns to the controller.

Model. The model name of the controller. (The model number is also printed on a sticker on the outside bracket of the controller.)

Serial #. The serial number of the controller. (The serial number is also printed on a sticker on the outside bracket of the controller, or on the backside of the controller.)

Firmware. The firmware version running on the controller.

Driver. The driver version being used to interact with the controller.

Status. The overall status of the controller. Possible statuses include OK, Warning, Error, and No Units. **Warning** indicates that a background task is currently being performed (rebuilding, migrating, or initializing). **Error** indicates that a unit is degraded or inoperable. If both Error and Warning conditions exist, the status will appear as Error. For more information, see “Checking Unit and Drive Status through 3DM” on page 139.
Controller Details page

Figure 90. Controller Details Page

The Controller Details page appears when you choose Information > Controller Details from the menu bar.

This page provides detailed information about the controller specified in the drop-down list on the menu bar.

You can also open or download an error log from this screen.

Model. The model name of the controller.

Serial #. The serial number of the controller.

Firmware. The firmware version running on the controller.

Driver. The driver version being used to interact with the controller.

BIOS. The BIOS version on the controller.

Boot Loader. Boot Loader version on the controller.

Available Memory. The amount of available memory on the controller. In the example above, 448MB is available out of the 512MB installed.

Bus Type. The bus type used on the controller. For example: PCIe.

Bus Width. The bus width detected by the controller. This is 8 lanes for the 9750 controller.
Bus Speed. The speed of the bus used on the controller.

Controller Phys. The number of phys on the controller, regardless of whether each currently has a device connected. The 9750 controller has 8 phys.

Connections. The number of connections that are presently being used out of the total number possible on the controller.

Drives. The number of drives that are connected to the controller out of the total number of devices possible on the controller.

Active Drives. The number of drives connected to the controller that are in an active unit out of the total number possible on the controller.

Active Units. The number of units on the controller that are active out of the total number possible on the controller.

Max Drives per Unit. The maximum number of drives that can be in a unit with the present firmware.

Error Log. Provides access to the firmware error log. Click on the Download Error Log link to download the firmware error log to your computer. This feature is important when contacting LSI for support with your controller. It will help LSI identify the problem you encountered.

Unit Information page

Figure 91. Unit Information Page

The Unit Information page appears when you choose Information > Unit Information from the menu bar, or when you click an ID number on the Controller Summary page.

This page shows a list of the units on the current controller and provides summary information about each unit.

To see details about a particular unit, click the link in the Unit # column.

Unit #. The unit number assigned to the unit by the firmware.

Name. If a name has been given to this unit, it shows here. If it is empty, no name has been assigned. You can name your unit in the Unit Names section of the Management > Controller Settings page.
Type. The type of unit, specified during configuration: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, or Single Disk. For details about each of the RAID levels, see “Available RAID Configurations” on page 6.

Capacity. The logical capacity (size) of the unit. (1 KB defined as 1024 bytes)

Status. The operational status of the unit: OK, Rebuilding, Initializing, Migrating, Verifying, Degraded, or Inoperable (missing drives). When a unit is Rebuilding, Initializing, Migrating, or Verifying, the percentage (%) complete is also shown. For an explanation of the statuses, see “Unit Statuses” on page 143.

Note: If an asterisk (*) appears next to the status of a unit, there is an error on one of the drives in the unit. This feature provides a diagnostic capability for potential problem drives. The error may not be a repeated error, and may be caused by an ECC error, SMART failure, or a device error. To see if this error condition still exists, rescan the controller; rescanning will clear the drive error status if the condition no longer exists.

Identify. Check this box to cause the LED for the drives associated with this unit to blink in the enclosure. If the box is grayed, identify is not supported.

Unit Details page

Figure 92. Unit Details Page

The Unit Details page appears when you click an ID number on the Unit Information page. Because it is a sub-page of Unit Information, the page title in the menu bar continues to display “Unit Information” even when you view details of a unit.
The Unit Details page shows details about a particular unit. The specific information shown depends on what type of unit it is. For example, details about a RAID 5 unit made up of three subunits, each of which contains one drive, will include details about the unit and each subunit, as shown in Figure 92. However, if the unit is a Single Disk, only information about one disk will be shown.

Details on this page may include all or some of the following information described below.

To see details about a particular drive, click the VPort # (virtual port number). You’ll see a list of all drives, with the drive you selected highlighted.

Status. The operational status of the unit or subunit: OK, Rebuilding, Migrating, Initializing, Verifying, Degraded, or Inoperable (missing drives). When a unit is Rebuilding, Initializing, or Verifying, the percentage (%) complete is also shown. For status definitions, see “Unit Statuses” on page 143.

Name. The name assigned to the unit by an administrator.

Serial #. The serial number of the unit. This number is assigned by the firmware when the unit is created.

Capacity. The total capacity of the unit (capacities of subunits are not shown).

Type. The type of unit or subunit. RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, or Single Disk.

Stripe. The stripe size of the unit, if applicable.

Parities. The number of parity drives in the RAID unit.

Volumes. Displays the number of volumes in a unit. This is usually 1. If you created a boot volume on this unit, or if you have a unit on which you have enabled the auto-carving policy, you will see the number of volumes into which the unit has been divided. For more information, see “Using Auto-Carving for Multi LUN Support” on page 83.

Subunits. If the unit has subunits, details of the subunits are shown.

Note: If an asterisk (*) appears next to the status of a subunit, there is an error on one of the drives in the subunit. This feature provides a diagnostic capability for potential problem drives. The error may not be a repeated error, and may be caused by an ECC error, SMART failure, or a device error. Rescanning the controller will clear the drive error status if the condition no longer exists.

VPort #. If the unit Type is Disk, Single Disk, the VPort (Virtual Port) to which the drive is connected is shown. For multiple-drive units, the VPort numbers are shown in the subunits section. The VPort number is a link to the Drive Information page.
Drive Information page

Figure 93. Drive Information Page

The Drive Information page appears when you choose Information > Drive Information from the menu bar, or when you click a VPort # on the Unit Details page. If you arrive at this page from the VPort # hyperlink on the Unit Information page, the line showing the VPort # you clicked on is highlighted.

This page shows a list of drives on the current controller and a summary of each one.

To see additional detail about a particular drive in the Drive Details window, including the SMART data, whether command queuing is supported and enabled, and the SATA Link speed, click the link in the VPort # column.

VPort #. The virtual port to which the drive is assigned.

Model. The model of the drive.
Capacity. The physical capacity of the drive. (Note that the capacity as shown on 3DM 2 screen is calculated as $1 \text{ KB} = 1024$. This amount may differ from the capacity that is printed on the disk drive, where it typically has been calculated as $1 \text{ KB} = 1000$. Consequently, the capacity of the drive may appear smaller in the 3DM 2 screens. No storage capacity is actually lost; the size has simply been calculated differently for consistency.)

Type. The type of drive: SATA or SAS.

Phy. The number of the controller phy to which the drive is connected. Click the link to go to the Controller Phy Summary page. (For details, see “Controller Phy Summary page” on page 210.)

Slot. The number of the enclosure slot in which the drive is located. Click the link to go to the Enclosure Details page.

Unit. The unit the drive belongs to, if applicable.

Status. The status of the drive: OK, Not Supported, Not Present, and so forth. If you need help regarding a status displayed here, please contact Technical Support. For more information, see “Drive Statuses” on page 144.

Note: In most cases, the status of the drive will not correspond to the status of the unit, shown on the Unit Information page. Different status information is provided for drives and for units.

Identify. Check this box to cause the LED for this drive to blink in the enclosure. If the box is grayed, identify is not supported.
The Drive Details window displays when you click a VPort # on the Drive Information page.

This Drive Details window shows some Extra Drive Information, including Queuing and SATA Link Speed support, and the SMART data for SATA drives. SMART data is not displayed for SAS drives.

Extra Drive Information

Drive Type. The type of drive: SAS or SATA.

Serial #. The serial number of the drive.

Firmware. The firmware version of the drive.

Drive Ports. The number of physical ports on the drive.

Drive Connections. The number of connections made to the drive ports.

Interface Type. The drive interface, direct or expander.
SAS WWN. The SAS drive’s unique World Wide Number.

Reallocated Sectors. The number of sectors that have been re-allocated due to bad sectors on the drive.

Power On Hour. The total number of hours the drive has been powered-on.

Drive Temperature. The temperature of the drive.

Spindle Speed. The drive speed in RPM.

Queuing Supported and Queuing Enabled. (Not applicable to SAS drives) SATA-2 drives support NCQ (Native Command Queuing), which can result in increased performance for some applications, usually server-type applications. In order to make use of Native Command Queuing, the feature must be enabled at both the drive and the controller. Not all drives support queuing.

The queuing values in this window indicate whether the feature is supported and enabled at the drive. At the controller level, queuing is enabled or disabled for all drives in a unit on the Controller Settings page.

Link Supported and Link Enabled. These fields show the fastest link speed that the disk drive supports and the current link speed.

SMART Data

SMART data is displayed as hex values.

Consult your disk drive manufacturer for information on how to interpret the SMART data. The SMART data meaning varies by disk drive manufacturer and model.

SMART data is not presently displayed for SAS drives.
Controller Phy Summary page

Figure 95. Controller Phy Summary Page

The Controller Phy Summary page shows the properties of controller phys.

The Controller Phy Summary page can be accessed in two ways. If you have a direct-attached drive you can access this page from the Information > Drive Information page by clicking the phy ID for the drive. If all drives are connected via expanders, navigate to the Management > Controller Settings page. Under Other Controller Settings click the # link for Number of Controller Phys.

Phy. The ID number assigned to the phy connection.

SAS Address. The SAS address of the phy. Phys within each wide port have the same SAS address when they are connected to an enclosure. For directly-connected drives, each phy has a unique SAS address.

Link Enabled. The existing link speed between the controller and the hard drive or enclosure to which it is connected.

Link Control. Selectable field for setting the link speed between the device and the controller. The options are 1.5 Gbps, 3.0 Gbps, 6.0 Gbps, and Auto. The default is Auto. See “Changing the Phy Link Speed” on page 89.

Type. Shows the type of device connected by the phy—either SATA, SAS, or enclosure. A type of SATA or SAS means that the connection is a direct connection to the drive. Enclosure connections are made through an expander.

ID. The VPort address of directly-attached devices. Enclosures do not have VPort numbers, although the drives attached to them do. To find the VPort for a drive in an enclosure, click the ID link to go to the Drive Information page. The drive you selected will be highlighted.
The Controller Settings page appears when you choose Management > Controller Settings from the menu bar.

This page lets you view and change settings that affect the units on the controller specified in the drop-down list on the menu bar.

There are four main sections on this page:

- Background Task Rate and Mode
- Unit Policies
- Unit Names
- Other Controller Settings
- Update Firmware
Background Task Rate and Mode

Two Background Task settings allow you to control the balance of background tasks and I/O (reading and writing to disk) performed by the controller.

Background Task Rate lets you set the ratio at which background tasks are performed in comparison to I/O, on a scale from 5 to 1.

There are separate settings for Rebuild/Migrate Rate and Verify Rate. The Rebuild/Migrate Rate also applies to initialization. Although the same rate is used for rebuilding, migrating, and initializing, migrating has the highest priority.

For additional information, see “Setting Background Task Rate” on page 168.

Background Task Mode works with Background Task Rate, to address the issue of latency. Two settings are available: **Adaptive** (the default) and **Low Latency**.

Low Latency mode minimizes the latency (delay) in reading data from the RAID unit by slowing down the background task process. In contrast, **Adaptive** mode allows the firmware to adjust the interaction of background tasks with host I/Os to maximize the speed of both host I/O and background tasks.

For additional information, see “Working with the Background Task Mode” on page 165.

Unit Policies

On the 3DM 2 Controller Settings page you can enable or disable these policies: **Write Cache**, **Auto-verify**, **Overwrite ECC**, and **Queuing** You can also choose a **StorSave Profile** and change **Rapid RAID Recovery** settings.

Write Cache. When write cache is enabled, data is stored locally in memory on the drive before it is written to the disk drive media, allowing the computer to continue with its next task. This improves performance. However, in the event of a power failure, the data in the controller's write cache will be lost if you do not have a battery backup unit (BBU) or an uninterruptable power supply (UPS).

For additional information, see “Enabling and Disabling the Unit Write Cache” on page 109.

Read Cache. The Read Cache unit policy lets you enable either **Basic** read caching or **Intelligent** read caching. You can also disable the Read Cache unit policy, if preferred. By default, Read Cache is set to **Intelligent**.

Intelligent read caching includes a typical read-ahead caching method which is used to proactively retrieve data from media and store it locally on the controller with the anticipation that it may be requested by the host, and also...
includes the Intelligent Read Prefetch (IRP) feature, which can improve performance at higher queue depth in multiple read only or mixed read/write stream environments. For additional information, see “Working with Read Cache Settings” on page 111.

Auto Verify. Enabling Auto Verify ensures that a verify takes place following either the Basic Auto Verify schedule or the Advanced Auto Verify schedule. For details, see “Enabling or Disabling Auto Verify for a Unit” on page 115.

When Auto Verify is not enabled, verify tasks are only run if you manually request one on the 3DM 2 Management page or in event of an unclean shutdown.

Overwrite ECC (Continue on Source Error When Rebuilding). This policy applies only to units which are redundant. (For units which are not redundant, a check box is not available.) When this policy is set, ECC errors are ignored when they are encountered during a rebuild. When this policy is not set, a rebuild will abort upon encountering an ECC error and the unit will be set back to Degraded.

Since this option could result in the loss of some source data in the event of source errors, select this option only if you want to ensure that a rebuild will complete successfully without manual intervention. If the rebuild fails and Overwrite ECC is not selected, then you have the option to start a rebuild manually. It is recommended that you execute a file system check when the rebuild completes. Under Windows, you can do this by right-clicking on the Drive and choosing Properties; then on the Tools tab, click Check Now. Under Linux use the fsck utility command. For example, `fsck /dev/sdal`.

Queuing. (Not applicable for SAS drives) This policy enables or disables Native Command Queuing (NCQ) for SATA drives in the unit. By default, queuing is disabled. You can enable it, if desired.

NCQ only operates when the feature is enabled at both the drive and the controller. If a drive does not support NCQ, the policy setting for the controller is ignored.

Enabling NCQ can improve performance in many applications; it causes command reordering to be done on the drive itself.

StorSave Profile. The StorSave feature includes an option that lets you change the StorSave Profile used for a unit. Three profiles are available: Protection, Balanced, and Performance. These profiles automatically adjust several different factors that affect protection and performance, including whether FUA (Forced Unit Access) is honored, whether Write Journaling is

Note: The policy **Overwrite ECC** is equivalent to the "Continue on Source Error" option in 3BM and the "IgnoreECC" option in the CLI.
enabled, and whether Disable Cache on Degrade is enabled. For additional information, see “Setting the StorSave Profile for a Unit” on page 118.

Note: If the write cache setting is disabled for a unit, the StorSave Profile capability does not apply and is automatically disabled.

Rapid RAID Recovery. Determines which Rapid RAID Recovery option to use, **All, Rebuild** or **Disable. All** will apply the policy to both rebuilds and unclean shutdowns. **Rebuild** will apply only to rebuilds. You can switch between **All** and **Rebuild** settings. However, once Rapid RAID Recovery is disabled for the unit, it cannot be re-enabled. For additional information, see “Rapid RAID Recovery” on page 121.

Unit Names

Units can be assigned names. A name can be assigned when the unit is created and can be changed from this screen. For additional information, see “Naming a Unit” on page 106.

Other Controller Settings

The Other Controller settings displays information about additional settings, some of which can only be changed in the BIOS (3BM).

Auto Rebuild. The Auto Rebuild policy determines how the controller firmware will attempt to rebuild degraded units.

When Auto Rebuild is disabled, only spares will be used to automatically rebuild degraded units. When Auto Rebuild is enabled, the firmware will automatically select drives to use for rebuilding a degraded unit using the following priority order.

- Smallest usable spare.
- Smallest usable unconfigured (available) drive.
- Smallest usable failed drive.

For additional information, see “Setting the Auto Rebuild Policy” on page 82.

Auto-Carving. Auto-carving can be enabled or disabled by selecting the appropriate radio button.

When this feature is enabled, any unit that is over a specified size (known as the *carve size*) will be broken down into multiple volumes of that size, plus a remainder volume. The default carve size is 2048 GB (2 TB). For example, using the default carve size, if the unit is 2.5 TB then it will contain two volumes, with the first volume containing 2 TB and the second volume
containing 0.5 TB. If the unit is 5.0 TB then it will contain 3 volumes, with the first two volumes containing 2 TB each and the last volume containing 1 TB.

Carve Size. Sets a size for dividing up units into volumes when Auto-Carving is enabled. This setting can be between 1024 and 2048 GB.

Number of Drives Per Spin-up. Number of drives that will spin up at the same time when the controller is powered up. (This setting only applies when the feature is supported by the disk drives.)

Delay between Spin-ups. The delay time (in seconds) between drive groups that spin up at one time on this particular controller.

Export Unconfigured Disks. This setting is not available for 9750 controllers.

Number of Controller Phys. The number of phy connections possible on the controller. The 3ware 9750 RAID controller has 8 phy.

Update Firmware

The Update Firmware function allows you to update the firmware of your 3ware RAID controller to the latest version, which allows you to take advantage of new features and fixes. For additional information, see “Updating the Firmware Through 3DM 2” on page 179.
Scheduling page

The Scheduling page appears when you choose Management > Scheduling from the menu bar.

The Scheduling page lets you set up a schedule for when background tasks (rebuild, migrate, initialize, verify, and self-test) should occur. Background tasks can have impact on the performance of your system, so you may prefer to schedule them at times when they will be least disruptive, such as in the middle of the night or on a weekend. For details about the different background tasks, see “Background Tasks” on page 151.

Select a type of task you would like to schedule. You start by selecting the type of task for which you want to set the schedule from the drop-down list at the top of the page:

- Rebuild/migrate tasks (also applies to initialization)
- Verify tasks (also applies to media scans)
- Self-tests

3DM 2 then updates the page to show you schedule details for that type of task.
Scheduled Rebuild/Migrates. You can enable or disable the schedule for the Rebuild/Migrate tasks by selecting either Follow Schedule or Ignore Schedule. When schedules are set to be ignored, these tasks can be performed at any time, and are not restricted to the scheduled times.

Scheduled Verify Mode. You can select either Basic or Advanced verify mode. Basic verify creates a once a week schedule. Advanced verify has seven scheduling slots per week, similar to the Rebuild/Migrate schedule. For more information, see “Selecting Advanced or Basic Verify Schedules” on page 172.

Task Schedules

Initially, 7 schedule slots are defined, for 24 hours each. This means that even if Follow Schedule is enabled for Rebuild/Migrate or if Advanced is selected for Auto Verify, this schedule is equivalent to Ignore Schedule, because tasks can run at any time, round the clock.

A maximum of 7 slots can be created, so to set a different schedule, start by deleting one or more of the existing scheduled slots, and then add new slots.

For step-by-step instructions for adding and removing schedules, and setting schedules to be followed or ignored, see “Scheduling Background Tasks” on page 169.
Self-test Schedules

Unlike scheduling of rebuilds and verifies, scheduling of self-tests is always followed. To disable self-tests you either remove all schedule times, or uncheck the tests listed in the Tasks column.

Note: Only the checked tasks will be run during the scheduled times. If none of the tasks are checked, self-tests will never run, even if you have scheduled time slots set.

Check SMART Thresholds. This test checks to see whether SMART thresholds have been exceeded.

The SMART thresholds indicate when a SATA or SAS drive is likely to fail, based on the number of errors that have been recorded through SMART (Self-Monitoring, Analysis and Reporting Technology).

If any of the disk drives have detected a “threshold exceeded” condition, then an AEN is logged to the 3DM 2 Alarms page. Moreover, if anything unusual is found during any self-test, it will be logged as an Alarm.
The Maintenance page appears when you choose Management > Maintenance from the menu bar.

The Maintenance page lets you perform maintenance tasks on existing units on the current controller and lets you create new units by configuring available drives.

Information about the Maintenance page is organized under these headings:
- Rescan Controller
- Unit Maintenance
- Maintenance Task Buttons for Existing Units
- Available Drives (to Create Units)
- Maintenance Task Buttons for Available Drives

Rescan Controller

The Rescan Controller button scans the ports on the controller. Rescanning updates the list of available drives shown and updates the status of all attached disks. If error conditions have been fixed, the status is updated to reflect that.
Rescanning is useful in a variety of maintenance tasks. For example, if you physically plug in a drive and want the controller to recognize the newly plugged-in drive, Rescan will find it.

Note: If you unplug a drive without first removing it through 3DM 2, Rescan may not recognize it as gone unless the drive was in use or until it is required by the system. Always use the **Remove** link to remove a drive before unplugging it.

Warning: Physically removing or adding drives which are not in hot swap bays can result in a system hang or may even damage the system and the drive.

Rescan checks all ports. It checks empty ports for newly plugged-in drives. If those drives were previously part of a 3ware RAID configuration and they still have valid DCB (Disk Configuration Block) information on them, the controller tries to piece them back together into a working unit. If a working unit can be formed, it will appear in the Unit Maintenance list when the scan is complete, and the operating system will be notified of the unit. In Linux, a device node will be associated with each unit created. In Windows, the device manager will reflect the changes under the disk drives icon. This process is known as importing drives.

If new drives do not have any data indicating they were previously part of a 3ware RAID configuration, they will appear in the Available Drives list.

In addition, if there is a unit with the status Inoperable before a rescan (for example, a RAID 5 unit missing 2 or more drives), and a rescan finds drives that complete the unit, the inoperable unit will become a valid unit.

Unit Maintenance

The Unit Maintenance section of the page lists all existing units on the current controller, and displays summary information about them.

The top row shows information about the unit, while subsequent rows show summary information about each drive in the unit.

Unit Information
Unit Number. The unit number assigned to the unit by the firmware. Use the checkbox next to the unit to select a unit before clicking one of the task buttons.

Drives. Number of drives in the unit.

Type of Unit. Type of unit: RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, or Single Disk. If the unit has been given a unique name, it shows beneath the RAID type.

Name of Unit. User-assigned unique name of the unit. The default setting is blank.

Capacity. The usable capacity (size) of the unit.

Status. Operational status of the unit: Ok, Rebuilding, Initializing, Verifying, Migrating, Degraded, or Inoperable (missing drives). When Rebuilding, Initializing, Migrating, or Verifying, the percentage (%) complete is also shown. The percentage complete can be active or paused. To see whether this task is currently active or paused, click on the unit number to display the Unit Details page, which has that information. For an explanation of the statuses, see “Unit Statuses” on page 143.

Drive Information

VPort. The VPort (virtual port) to which the drive is connected.

Model. The model of the drive.

Capacity. The capacity (size) of the drive.

Status. The status of the drive: OK, Not Supported, Not Present, and so forth. If you need help regarding a status displayed here, please contact Technical Support. For more information, see “Drive Statuses” on page 144.

Remove Drive. The Remove Drive link removes a drive from the controller so that you can safely unplug it. In the Unit Maintenance section, this link is only provided for drives that can be safely removed without creating an inoperable unit. (For example, a RAID 5 missing 2 or more drives or a RAID 0 missing 1 or more drives would become inoperable.) If you remove a drive from a redundant unit, the unit will become degraded. Once a unit has become degraded, additional drives cannot be removed without making it inoperable, so no Remove Drive link will display.

Warning: Physically removing drives which are not in hot swap bays can result in a system hang, data loss, or may even damage the system and the drive.
Maintenance Task Buttons for Existing Units

Below the list of units, a row of task buttons lets you perform maintenance and configuration tasks related to the unit. Before clicking one of these buttons, select the appropriate unit.

Verify Unit. Puts the selected unit in verifying mode. If the Advanced Verify schedule is selected on the Scheduling page, the unit will not start actively verifying until the scheduled time, and the status will indicate “Verify-Paused.” (The Unit Details page will indicate whether a unit is actively verifying.) If the Basic Verify schedule is active, clicking **Verify Unit** begins the verification process, and verify will begin within approximately 10 to 15 minutes.

If the unit you selected to verify is a redundant unit, the redundancy of the unit will be verified. For example, it will check parity for a RAID 5 or check data consistency for a RAID 1. If the unit you checked is not a redundant unit, verify will do a surface scan of the media. During verification, I/O continues normally. For RAID 0 and single disks, there is only a slight performance loss. For redundant units, you can set the background task rate on the Controller Settings page to specify whether more processing time should be given to verifying or to I/O. For more information, see “About Verification” on page 155 and “Setting Background Task Rate” on page 168.

While a unit is verifying, the status changes to Verifying and a **Stop Verify** link appears in the right-most column of the Unit Maintenance table.

Note: If the unit has not previously been initialized and you click **Verify Unit**, the initialization process starts. Initialization cannot be halted, so no Stop Verify link appears. (Initialization can be paused, however, through Scheduling. Initialization follows the Rebuild/Migrate schedule, so turning on scheduling for Rebuild/Migrate will pause initialization, as well.) For more information about initialization, see “About Initialization” on page 152.

Rebuild Unit. Replaces a failed drive in a degraded unit with an available drive and begins rebuilding the RAID. When you select a degraded unit and click **Rebuild Unit**, a dialog box listing available drives appears, so that you can select the drive you want to use. If the degraded unit has more than one failed drive (for example, a RAID 10 where both mirrored pairs each have a failed drive), you will repeat this process a second time.

If rebuild scheduling is enabled on the Scheduling page, the unit will not start actively rebuilding until the scheduled time, and the status will change to say “Rebuild-Paused.” (The Unit Details page indicates whether a unit is actively
rebuilding.) If rebuild scheduling is not enabled, the rebuild process will begin right away.

For more information about rebuilds, see “To verify a unit through 3BM” on page 159.

Migrate Unit. Reconfigures a unit while it is on-line. Migration can be used to change the RAID level, to expand the capacity by adding additional drives, or to change the stripe size.

Warning: Once migration of a unit is started, it can be paused, but it can not be cancelled.

When you select a unit and click **Migrate Unit**, a dialog box appears which lists the drives in the unit and any additional available drives. In the dialog box are two drop-down menus, one for choosing the RAID level and one for choosing stripe size.

Figure 99. Migrating a unit

You can only migrate a unit to a RAID level that will be equal to or larger than the original unit. For example, you can migrate from a RAID 5 array with 4 drives to a RAID 0 with four drives but you cannot migrate from a RAID 5 with four drives to a RAID 10 with four drives.

After you have specified changes to the unit, the Unit Maintenance screen reflects your changes and shows the percentage of migration completed.

While the unit is migrating, you can still access the unit as normal but the performance will be lower. You can adjust the I/O rate with the radio buttons on the Controller Settings page. (See “Setting Background Task Rate” on page 168.)

Remove Unit. Removes a selected unit and allows you to unplug the drives and move the unit to another controller. The data on the unit remain intact.
Caution: Before you click Remove Unit, make sure the unit you are removing is unmounted from the operating system and that the system is not accessing it.

If a unit is not unmounted and you remove it, it is the equivalent of physically yanking a hard drive out from under the operating system. You could lose data, the system could hang, or the controller could reset.

To unmount a unit under Windows, use Administrative Tools > Computer Management > Disk Management. In the Computer Management window, right-click on the partition and Remove the logical drive letter associated with the unit.

To unmount a unit under Linux, unmount the mount point to where the RAID unit is mounted. For example, if you want to remove unit 0 and you know that 0 corresponds to /dev/sdb, you should unmount all partitions for sdbx (where x is the number of the partition).

`umount /dev/sdbx`

When you click Remove Unit, you will be asked to confirm that you want to proceed. When you confirm the removal, the unit number and information will be removed from 3DM 2. (Units created in the future can reclaim this unit number.)

The operating system is notified that the unit was removed. In Linux the device node associated with this unit is removed. In Windows the Device Manager will reflect the changes under the disk drives icon.

Information about the unit remains intact on the drives. This allows the drive or drives to be reassembled into a unit again on this controller, or if moved to another controller.

Warning: Physically removing drives which are not in hot swap bays can result in a system hang, data loss, or may even damage the system and the drive.

Delete Unit. Deletes the selected unit and allows you to use the drives to create another unit. The drives appear in the list of Available Drives.

Caution: Before you click Delete Unit, make sure the unit you are removing is unmounted from the operating system and that the system is not accessing it.

Devices can be unmounted through the operating system. For details, see the discussion under Remove Unit, above.

Warning: When a unit is deleted, the data will be permanently deleted: the drives cannot be reassembled into the same unit. If you want to reassemble the drives on another controller and access the existing data, use Remove Unit instead of Delete Unit.
After deletion, the operating system is notified that the unit was deleted. In Linux the device node associated with this unit is removed. In Windows the Device Manager will reflect the changes under the disk drives icon.

Available Drives (to Create Units)

This section lists the drives on the controller which are not currently configured as part of a unit. The VPort number, model, capacity, type, phy, slot, and status are all displayed, as they are for drives in existing units.

The available drives can be sorted by VPort, model, capacity, type, phy, or slot by clicking on the column headings. (For details about these attributes, see “Drive Information page” on page 206.)

Remove Drive. The Remove Drive button removes a drive from the controller so that you can safely unplug it. Select the box for any drive in the Available Drives list you wish to remove.

Warning: Physically removing drives which are not in hot swap bays can result in a system hang or may even damage the system and the drive.

Maintenance Task Buttons for Available Drives

Below the list of available drives, a row of task buttons lets you work with available drives to create new units, remove drives, designate drives as spares, and clear the configuration of a spare so that it can be used for another purpose.

Create Unit

Use the **Create Unit** button to create a unit for use on the current controller. Begin by selecting the drives you want to use in the list of Available Drives, and then click **Create Unit**. You will be prompted to select the unit Type, Name, Stripe size (if applicable), and unit policy settings.

A window like the one below shows the drives you selected, and lets you specify configuration settings.
Figure 100. Configuration Window in 3DM 2

For more detailed instructions, see “Configuring a New Unit” on page 91.

Type. The drop-down list lists the possible RAID configurations for the drives selected in the list of Available Drives. Available configurations may include RAID 0, RAID 1, RAID 5, RAID 6, RAID 10, RAID 50, and Single Disk. For information about these configurations, see “Available RAID Configurations” on page 6.

Depending on the size of the unit, a RAID 50 unit will contain 2 or more subunits. For example, when you are configuring a RAID 50 with twelve drives, an additional field appears, in which you select the number of drives per subunit—3, 4, or 6.

Figure 101. Configuring a RAID 50 with 12 Drives

Name. You can enter a name for the unit.

Stripe. The drop-down list of stripe sizes lists the possible stripe sizes for the configuration you selected in the RAID level drop-down.

Using the default stripe size of 256 KB usually gives you the best performance for mixed I/Os. If your application has some specific I/O pattern
(purely sequential or purely random), you might want to experiment with a different stripe size.

Write Cache, Auto Verify, and Overwrite ECC. These check boxes let you set the policies for the unit. These policies can also be set and changed on the Controller Settings page. For details about these policies, see “Unit Policies” on page 212.

Note: If the configuration window disappears while you are selecting drives, 3DM 2 may have refreshed. Click **Create Unit** again. If desired, you can reduce the frequency with which information refreshes in 3DM 2, or disable refresh temporarily, on the 3DM 2 Settings page.

Read Cache. By default, Read Cache is set to Intelligent. You can change it to Basic, or disable it, if desired. Setting the appropriate type of Read Cache can improve performance for different types of applications. For details, see “Working with Read Cache Settings” on page 111.

StorSave. You can specify the StorSave Profile to be used for the unit. Three profiles are available: Protection, Balanced, and Performance. For more information, see “Setting the StorSave Profile for a Unit” on page 118.

Rapid RAID Recovery. Determines which Rapid RAID Recovery option to use, **All, Rebuild** or **Disable. All** will apply the policy to both rebuilds and unclean shutdowns. **Rebuild** will apply only to rebuilds. You can switch between **All** and **Rebuild** settings, but, once Rapid RAID Recovery is disabled for the unit, it cannot be re-enabled. For details, see “Rapid RAID Recovery” on page 121.

Set Spare

Use the **Set Spare** button to set one or more drives as spares. Select the drives you want to use from the list of Available Drives, then click **Set Spare**.

Clear Configuration

Use the **Clear Configuration** button to reset a Spare to be an Available Drive. Select the drives you no longer want to be Spares, then click **Clear Configuration**.
Alarms page

Figure 102. Alarms Page

The Alarms page appears when you click Monitor > Alarms on the menu bar. This page displays a list of AENs (asynchronous event notifications) received from the controller displayed in the drop-down list in the menu bar.

Up to 1000 events can be listed. After the 1000-limit is reached, the oldest events are deleted, as new ones occur.

You can sort the events by severity or time. To do so, just click the column header.

For information about a particular event, click it on the Alarms page; the 3DM 2 Help will open with information about the event. For a complete listing of the alarms that appear on the Alarms page, see “Error and Notification Messages” on page 246.

Clear Alarms. The Clear Alarms button removes all alarms shown in the list.

Sev. Shows the severity of the event. Three levels are provided:
• Errors are shown next to a red box
• Warnings are shown next to a yellow box
• Information is shown next to a blue box

Time. The time shown for alarms is the time the alarm was received by the driver from firmware.

Message. The specific text relating to the alarm condition.
The Battery Backup page appears when you choose **Monitor > Battery Backup** on the menu bar. Use this page to determine whether a backup battery is present, see details about it, and perform a battery test.

Battery Backup Unit. Indicates whether the BBU is present.

Serial Number. Indicates the BBU serial number.

BBU Ready. Indicates if the BBU is able to backup the 3ware RAID controller or not. If the BBU is “Ready”, write cache can be enabled on the 3ware RAID controller. When the status is not “Ready,” write caching is automatically disabled on all units attached to the controller.

BBU Status. Indicates the status of the BBU. Possibly BBU statuses include the following:

- **OK.** The BBU is functioning normally.
- **Not Present.** The BBU was not detected or is disabled. (The BBU can be disabled using CLI.)
- **No Battery.** No battery pack is installed in the BBU.
- **Testing.** A battery capacity test is in process.
- **Charging.** The battery is being charged. Charging of the battery occurs automatically if the battery voltage falls too low. This normally occurs about once a week to top off the charge level; the process does not change the BBU readiness state.

If the battery is ever discharged through a backup cycle or if the system power is off for more than two weeks, the battery status changes to “Charging” the next time the system is powered on. This indicates the BBU is not able to backup the 3ware RAID controller. When the BBU is in the charging state, write caching is disabled automatically on all units attached to the controller.
• **Fault.** The BBU detected a fault. This occurs if the voltage or temperature is outside the acceptable range.

• **Error.** Other BBU error. Please contact LSI Technical Support.

• **Weak Battery.** The battery should be replaced soon. The results of a battery health test or capacity test indicate that the battery is below the warning threshold (48 hours).

• **Failed Battery.** The battery failed a test and must be replaced. A “Failed Battery” status is displayed if the battery failed the health test or the battery capacity is below the error threshold (24 hours). The battery must be replaced.

Battery Voltage. Indicates the voltage status of the battery. The BBU measures and evaluates the battery voltage continuously. If the voltage falls outside the normal range, warning or error level AENs are generated. In the case of a voltage error the BBU status will change to “Fault” and the battery will be disconnected electronically.

Battery Temperature. Indicates the temperature status of the battery. The BBU measures and evaluates the battery pack temperature continuously. If the temperature falls outside the normal range, warning or error level AENs are generated based on the measured temperature. In the case of a temperature error, the BBU status will change to “Fault” and the battery will be disconnected electronically.

Estimated Backup Capacity. Indicates the estimated backup capacity in hours. This is the amount of time that the battery backup unit can protect the data in the 3ware RAID controller's cache memory. This field is set to zero at the start of a new test and is updated after the test completes. A capacity of zero will also show if the BBU is disconnected and then reconnected.

Under optimal conditions, a battery can protect for up to 72 hours. However, with a fresh battery, you may see a higher number in this field. As the battery ages, the backup capacity diminishes.

Last Capacity Test. Indicates the date when the last battery test was completed. To test the battery click the **Test Battery Capacity** link. For details, see “Testing Battery Capacity” on page 187.

Battery Installation Date. Indicates when the BBU last detected the battery pack was removed and replaced.
Enclosure Summary page

Figure 104. Enclosure Summary Page

The Enclosure Summary page appears when you choose **Monitor > Enclosure Support** from the menu bar.

The Enclosure Summary page provides basic information about any enclosures attached to your system. The specific details that display depend upon your enclosure. You can find a list of supported enclosures from the Data & Interoperability tab, on http://www.lsi.com/channel/support/marketing_resources.

ID. The ID that the 3ware firmware assigns to the enclosure. This ID is also a link to a page with more detailed information about the enclosure.

Status. The status of the enclosure.

Vendor. The name of the manufacturer of the enclosure.

Product ID. The product ID of the enclosure.

Slots. The number of slots in the enclosure.

Drives. The number of drives in the enclosure.

Fans. The number of fans in the enclosure.

Temp Sensor. The number of temperature sensors in the enclosure.

Power Supply. The number of power supplies in the enclosure.
The Enclosure Details page appears when you click the ID of an enclosure on the Enclosure Summary page.

Use this page to view information about the enclosure, fans, temp sensors, power supplies, and drive slots.

Information about the Enclosure Details page is organized under these headings:

- Enclosure ID
- Fan Summary
- Temp Sensor Summary
- Power Supply Summary
- Slot Summary
Enclosure ID

Status. The status of the enclosure.

Vendor. The manufacturer of the enclosure.

Product ID. The product ID of the enclosure.

Revision. The manufacturer’s revision number for the enclosure.

Diagnostic. Click the **Diagnostic Text** link to download a log of enclosure diagnostic information to your computer. If you contact LSI for support with your controller, they may ask you to use this feature. It may help identify the problem you encountered.

Controller ID. The ID of the controller connected to the enclosure.

Fan Summary

Fan. Lists the ID number associated with the fan.

Status. Will be one of OK, Failure, Not Installed, Unknown, or Off. For status definitions, see “Fan Status” on page 194.

State. Will be **ON** or **OFF**.

Speed. Fan speed is automatically controlled by the enclosure monitoring software to maintain correct enclosure temperature. Possible settings are Stopped, Lowest, Second Lowest, Third Lowest, Intermediate, Third Highest, SecondHighest, Highest, and Unknown.

RPM. The fan speed in revolutions per minute.

Identify. If supported by the enclosure manufacturer, checking this box will cause an LED to blink on the enclosure containing the specified fan. If the box is grayed, identify is not supported.

Temp Sensor Summary

Temp Sensor. The ID number of the specified temperature sensor.

Status. The status of the temperature sensor. Can be OK, Failure, Not Installed, Off, or Unknown. In addition, there are threshold warnings of Over Temp Failure, Over Temp Warning, Under Temp Warning, and Under Temp Failure. For status definitions, see “Temp Sensor Status” on page 194.

Temperature. The temperature of the enclosure in Centigrade and Fahrenheit.

Identify. If supported by the enclosure manufacturer, checking this box will cause an LED to blink on the enclosure containing the specific temperature sensor. If the box is grayed, identify is not supported.
Power Supply Summary

Power Supply. The ID number associated with the specified power supply.

Status. Can be OK, Failure, Not Installed, Off, or Unknown. For status definitions, see “Power Supply Status” on page 194.

State. Indicates if the power supply is ON or OFF.

Voltage. The status of the dc voltage output of the power supply. Can be Normal, Over Voltage, Under Voltage, or Unknown.

Current. The status of the dc amperage output of the power supply. Can be Normal, Over Current, or Unknown.

Identify. If supported by the enclosure manufacturer, checking this box will cause an LED to blink on the enclosure containing the specific power supply. If the box is grayed, identify is not supported.

Slot Summary

Slot Summary. Lists the enclosure slots and indicates which ones contain drives, and the status of each drive.

Slot. The ID of the slot for a drive in the enclosure.

Status. The status of the drive in the slot. Can be Inserted, Ready To Insert, Ready To Remove, or Activated.

VPort. The VPort assigned to the drive in the slot. Clicking the link takes you to the Drive Information page. The drive you selected will be highlighted.

Identify. Check the box to cause the LED associated with that slot to blink.
The 3DM 2 Settings page appears when you click 3DM 2 Settings on the menu bar. Use this page to set preferences, including email notification for alarms, passwords, page refresh frequency, whether remote access is permitted, and the incoming port for 3DM 2 to listen for requests.

Information about the 3DM 2 Settings page is organized under these headings:

- E-mail Notification
- Password
- Page Refresh
- HTTP Settings
- Server Configuration
E-mail Notification

Use the fields in this section to set up and manage notifications of events by e-mail.

Send E-mail. This field determines whether e-mail notification is **Enabled** or **Disabled**. It is a good idea to enable this feature, so that you receive email when your units or drives have problems.

Notify On. Specifies the type of events for which notifications should be sent. A severity of **Information** will send e-mails for all alarms, a severity of **Warning** will send e-mail for alarms with severity of Warning and Error. A severity of **Error** will send e-mail for alarms with severity of Error.

Sender. Enter the email address which will appear in the “From” field.

Recipient. The e-mail address to which notifications should be sent. You can enter multiple addresses, separated by commas (,).

Mail Server (name or IP). If the machine on which you are running 3DM 2 has access to a name server, you may enter the machine name of the mail server in the Server field. Otherwise, use the IP address.

Mail Server Login. If your email server requires authentication, enter the login for the server. If you are uncertain of the login, contact the administrator of the email server.

Mail Server Password. If your email server requires authentication, enter the password for the Mail Server login.

Mail Server Port uses SSL. If your mail server requires or supports encrypted email, set this to **Yes**. For more information, See “Managing E-mail Event Notification” on page 72.

Save E-mail Settings button. Saves the e-mail notification settings.

Send Test Message button. Sends a test message using the saved e-mail settings.

Password

Use the fields in this section to set the passwords for the User and Administrator. When 3DM 2 is first installed, the default password for both is 3ware.

Change Password For. Select the access level for which you are setting the password: **User** or **Administrator**. Users can only view status information in 3DM 2, while Administrators can make changes and administer the controller and associated drives.

Current Password. Enter the current password.

New Password. Enter the new password.
Confirm New Password. Enter the new password a second time, to be sure you have entered it correctly.

Change Password button. Saves password changes.

Page Refresh
Minutes Between Refresh. Displays how frequently pages in 3DM 2 will be refreshed with new data from the controller. To change this setting, select another option from the drop-down. If you prefer 3DM 2 to only refresh when you click Refresh Page, select Never.

The Login, Help and Drive SMART data pages do not automatically refresh. All other 3DM 2 pages do.

HTTP Settings
Listening Port. This field specifies the HTTP: port to be used by 3DM 2 when listening for communications. The default port setting is 888.

If you change this port, make sure the port you specify is not being used. Failure to do so will cause 3DM 2 to stop responding and you will have to restart it by hand.

Change Port button. Saves a new port number.

Server Configuration
Allow Remote Access. This field enables or disables the ability for users and administrators to access 3DM 2 from a remote computer.

Command Logging. This field lets you enable or disable command logging. For more information, See “Controlling Command Logging in 3DM 2” on page 75.
13

Troubleshooting

This troubleshooting section includes the following sections:

- Web Resources
- Before Contacting Customer Support
- Basic Troubleshooting: Check This First
- Command Logging
- Drive Performance Monitoring
- Problems and Solutions
- Error and Notification Messages

Web Resources

For support, troubleshooting tips, frequently asked questions, software releases, and interoperability information related to 3ware RAID controllers, refer to:

- LSI 3ware support page:
 http://www.lsi.com/channel/support
- LSI eSupport Knowledge Base:
- LSI 3ware software downloads:
 http://www.lsi.com/channel/ChannelDownloads
- LSI 3ware documentation:
 http://www.lsi.com/channel/ChannelDownloads
- LSI 3ware interoperability lists:
 http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

If you have a degraded unit or problem drive, see “Maintaining Units” on page 139.
Before Contacting Customer Support

Four screens in 3DM 2 provide controller version and status information that can be helpful when contacting 3ware Customer Support with questions or for troubleshooting: Controller Summary, Controller Details, Unit Information and Enclosure Summary (The Controller Details and Unit Information screens are available from the Information tab, Enclosure Summary is available from the Monitor tab.)

You can copy and paste the information from these screens into an email using the system clipboard. When each page is displayed on the screen, highlight it using your mouse (or press Ctrl-A to select all text), press Ctrl-C to copy it to the clipboard, and then Ctrl-V to paste it into an e-mail.

You may also want to take a screen capture of these pages so that you can respond to questions about your system configuration to the Customer Support representative.

Additional useful information can be gathered from the error logs. For instructions for collecting error logs, search the LSI Knowledge Base for keyword 12278 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

Basic Troubleshooting: Check This First

Many error messages can be traced to improperly connected hardware. Hardware can appear to be connected, yet not be in full contact. This can cause intermittent errors that are hard to identify.

Reseat the following items to make sure they are in full contact and are not loose:

- Cables
- Power cords and power connectors
- BBU connectors
- RAID controller
- Hard drives

If you have insured that all connections are secure and the errors still occur, one strategy to confirm or rule out hardware problems is to swap suspected bad drives, cables or power cords with known good ones. You can also:

- Move the drive to a different drive slot on the controller.
- In the case of a controller, try a different computer.
Troubleshooting

Command Logging

All changes that are made to RAID configurations using 3DM 2 or CLI are automatically stored in a special log file, tw_mgmt.log. This log can be helpful for troubleshooting problems with your RAID controller and units.

Under Linux, tw_mgmt.log is in the /var/log directory.

For Windows Vista and Windows Server 2008, tw_mgmt.log is in \ProgramData\3ware.

For earlier versions of Windows, tw_mgmt.log is in \Documents and Settings\All Users\Application Data\3ware.

You can enable or disable command logging through 3DM 2 under Server Configuration on the 3DM 2 Settings page. For more information, see “Controlling Command Logging in 3DM 2” on page 75.

For more information about command logging, search the LSI Knowledge Base for keyword 15123 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

To disable command logging for CLI, set an environment variable TW_CLI_LOG to OFF.
Drive Performance Monitoring

When one drive in a RAID unit is responding much slower than others, it reduces the performance of the entire unit.

Drive Performance Monitoring (DPM) is now available to measure drive performance, and to help identify when a specific drive is causing problems so that you can have the drive manufacturer repair or replace it.

DPM is an advanced trouble-shooting tool. Commands are available through the 3ware CLI to enable and disable DPM, and to see a range of different statistics. These statistics can be useful to LSI technical support to help you troubleshoot problems with your RAID controller and units.

Types of DPM Statistics

The following drive statistical data can be stored and reported:

- **Queue depth**, which indicates the number of read/writes that are currently outstanding.
- **IOP**, which indicates the number of read/writes that have completed
- **Transfer rate**, which indicates the number of sectors that have been read/written
- **Response time**, which indicates the execution time of all commands
- **Command read/writes**, which indicates the drive and drive sectors' accumulated read and write commands.

Available DPM Commands

Drive Performance Monitoring commands are available through the CLI. An overview of the commands is provided below. For more information about the command syntax and for examples of the report output, see the CLI Syntax Reference in the *3ware SATA+SAS RAID Controller Card CLI Guide, Version 10.0*.

- **Enable DPM**. This starts the collection of statistics for drives attached to your RAID controller. (/c dpmstat=on).

 For efficient collection of data, initiate read/write activity on the specified controller. The numbers will change over time as the new and old data are averaged.

- **Disable DPM**. This stops the collection of statistics. (/c dpmstat=off)

 DPM is disabled by default since there is overhead in maintaining the statistics. DPM is also disabled following a reboot or power-on. Turning
off DPM does not clear the statistical data that has been recorded. To clear
the data, use the command \texttt{/cx/px set dpmstat=clear [type=ra|lct|ext]}.

- **Display a DPM Summary.** This shows whether DPM is On or Off, and
 provides summary statistics for drives attached to a controller.
 \texttt{(cx show dpmstat)}

 Note that if DPM is Off, this summary may still show data, although that
data will be static, and not changing over time. Disabling DPM does not
not clear the existing data. That is done separately, on a per-port basis (see
below.)

You can also show a subset of summary data, for individual types of
statistics (instantaneous, running average, or extended drive statistics), by
specifying a type attribute with the command.

- **Display Specific Drive Statistic.** On a per-port basis, you can display
 five different statistical reports:
 - **Instantaneous.** This measurement provides a short duration average.
 \texttt{(cx/px show dpmstat type=inst)}
 - **Running Average.** Running average is a measure of long-term
 averages that smooth out the data, and results in older results fading
 from the average over time \texttt{(cx/px show dpmstat type=ra)}
 - **Long Command Times.** This a collection of the commands with the
 longest read/write response time. \texttt{(cx/px show dpmstat type=lct)
 - **Histogram Data.** The histogram categorizes the read/write execution
 times and group them together based on time frames.
 \texttt{(cx/px show dpmstat type=histdata)}
 - **Extended Drive Statistics.** The extended drive statistics refers to
 statistics of a drive's read commands, write commands, write
 commands with FUA (Force Unit Access), flush commands, and a
 drive sectors's read, write, and write commands with FUA.
 \texttt{(cx/px show dpmstat type=ext)}

- **Clear Individual Statistic Counters.** On a per-port basis, you can clear
 specific statistic counters, using these commands:
 - \texttt{/cx/px set dpmstat=clear}
 - \texttt{/cx/px set dpmstat=clear type=ra}
 - \texttt{/cx/px set dpmstat=clear type=lct}
 - \texttt{/cx/px set dpmstat=clear type=ext}
Problems and Solutions

This section covers some common problems and solutions. It is organized into the following sections:

• Enclosure-Related Problems
 • An LED is blinking red on an enclosure.

• Hardware Installation Problems
 • The 3ware BIOS screen never appears
 • Need to boot from a non-3ware device without changing the boot order

• Software Installation Problems
 • The 3ware RAID controller was configured without problems, but the system does not boot
 • A unit shows up as unusable, because of missing drives:

• Problems in 3DM and 3BM
 • A 3ware RAID controller does not show in the list of controllers
 • When booting a system, a drive is not showing up in the startup screens, in 3BM, or in 3DM

Enclosure-Related Problems

An LED is blinking red on an enclosure.

A blinking red LED on an enclosure may indicate that there is a “predicted fault” on the drive in that slot. Actual LED behavior will depend on the enclosure manufacturer. Refer to the user guide for your enclosure.

Such an error can result from a number of different factors, including a SMART error, read error, or cable error. The drive has not failed yet, but may fail soon.

For additional information about the LED indicators on an enclosure, see “Enclosure Drive LED Status Indicators” on page 142.

Hardware Installation Problems

Two common problems during hardware installation are listed below. For details related to other issues, check the LSI Knowledge Base at https://selfservice.lsi.com/service/main.jsp.

The 3ware BIOS screen never appears

• The 3ware RAID controller may not be installed properly. Reinstall the hardware and reboot.
• The motherboard may be functional, but may not be compatible. Please check the Motherboard Compatibility List, available on the LSI website at http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab, to see if your motherboard has been tested by 3ware. If you have a different type of motherboard available, you may want to test the controller in it to see if the 3ware BIOS screen appears.

• The motherboard's BIOS may need to be upgraded. Check the web site of the motherboard manufacturer to download and install their latest BIOS.

• The motherboard may not be functional.

• You may not have the latest 3ware firmware and driver. To see what version you have, see “Determining the Current Version of Your 3ware Driver” on page 176. To download the most recent software, see http://www.lsi.com/channel/ChannelDownloads.

Need to boot from a non-3ware device without changing the boot order

If the operating system is installed on a 3ware unit, you can temporarily bypass the 3ware BIOS and prevent the OS from booting from that unit by pressing Alt-b. This saves the step of changing the boot order in the motherboard BIOS and having to change it back again.

Software Installation Problems

The 3ware RAID controller was configured without problems, but the system does not boot

The problem could be one or more of the following:

• The BIOS may have changed the order of the boot devices. Check your system BIOS boot sequence.

• The 3ware BIOS will only boot from the first unit listed in 3BM. You can change the unit from which the 3ware controller boots by moving it to the top of the list of units by highlighting the unit and pressing the 'Page Up'/ 'Page Down' keys.

• The operating system is installed on a device that is not in your system’s boot order. Use your system’s Setup utility to include the StorSwitch controller in the boot order.

• If your operating system was installed before you configured your RAID units, you may have overwritten your operating system. Remember that creating or deleting a RAID unit overwrites any existing data on the member drives. Reinstall your operating system.

• There may be a compatibility problem between the motherboard system BIOS and the 3ware BIOS. Check the LSI website to see if your motherboard is compatible with the 3ware BIOS, and check with your motherboard manufacturer for potential BIOS updates. Interoperability
information is available at http://www.lsi.com/channel/support/marketing_resources/index.html.

A unit shows up as unusable, because of missing drives:

Unusable Arrays:

3 drive 64K RAID 5 558.77 GB (Unit 1)
SATA - Maxtor 6B300S0 279.86 GB (Port 6)

The unit has some but not all of its members available. The unit will be unusable. If this unit is your boot device, your system will not boot. You must either return the missing disks to complete the unit, or release the member disks by deleting the incomplete unit(s) listed in the display. Remember that deleting a RAID unit overwrites any existing data on the member drives.

CAUTION: Do not delete the inoperable unit and recreate it, as this will overwrite the data and make data recovery very difficult.

If you get this error, contact technical support at http://www.lsi.com/channel/ContactUs.

Problems in 3DM and 3BM

A 3ware RAID controller does not show in the list of controllers

You may not have the most recent driver for your controller, the driver may not be loaded, or you may not have the most recent version of the CLI or 3DM.

To find out the driver version currently installed, see “Determining the Current Version of Your 3ware Driver” on page 176.

Current drivers and software are available for download on the LSI website at http://www.lsi.com/channel/ChannelDownloads.

When booting a system, a drive is not showing up in the startup screens, in 3BM, or in 3DM

This could be due to one or more of the following:

- Defective cable
- Defective drive
- Defective enclosure or drive slot
- Poorly seated drive
- Poorly connected power cable
- Poorly connected data cable
• Defective connector on the 3ware controller

If a drive that previously showed up in 3DM or 3BM does not show up, try the following:

1 Power the system down, then reseat the drive in the slot, reseat the data cable, and reseat the power cable.

2 Power the system back up.

3 If the drive still does not show up in 3DM or 3BM, then swap that drive with a drive that is showing up.

4 If the drive now shows up, and drive you swapped it with does not, then the drive is OK. The problem could be the controller connector, the cable, the power connector, or the enclosure or drive slot.

5 Change each of these things, one at a time
 • Try a different connector on the controller
 • Try a different data cable
 • Power the drive with a different power connector from the power supply
 • Try connecting the drive directly to the motherboard, bypassing the enclosure or drive slot

If the drive shows up, then you will know which hardware component was defective.

If the drive still does not show up, contact 3ware Technical Support.

Error and Notification Messages

Error and notification messages are issued by the 3ware RAID controller when an error is detected or when an action is completed. These messages are sometimes referred to as AENs (asynchronous event notifications).

AEN messages are displayed on the 3DM 2 Alarms page and CLI Show Alarms page.

On the 3DM 2 Alarms page, you can click on the message to jump to help text about that message. You can also look the message up in the list below. In 3DM 2, the message number is the last few digits within the parentheses at the beginning of the message description. For example, in the string (0x04:0x002B), “002B” is the message number. To find additional information about the message 2B, you would look up 002B in the list below.

Note that the messages are listed below in hex order, since the message numbers are in hex.
Error and notification messages are listed in Table 14. Descriptions of each are provided after the table.

<table>
<thead>
<tr>
<th>Value</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>Controller reset occurred</td>
</tr>
<tr>
<td>0002</td>
<td>Degraded unit</td>
</tr>
<tr>
<td>0003</td>
<td>Controller error occurred</td>
</tr>
<tr>
<td>0004</td>
<td>Rebuild failed</td>
</tr>
<tr>
<td>0005</td>
<td>Rebuild completed</td>
</tr>
<tr>
<td>0006</td>
<td>Incomplete unit detected</td>
</tr>
<tr>
<td>0007</td>
<td>Initialize completed</td>
</tr>
<tr>
<td>0008</td>
<td>Unclean shutdown detected</td>
</tr>
<tr>
<td>0009</td>
<td>Drive timeout detected</td>
</tr>
<tr>
<td>000A</td>
<td>Drive error detected</td>
</tr>
<tr>
<td>000B</td>
<td>Rebuild started</td>
</tr>
<tr>
<td>000C</td>
<td>Initialize started</td>
</tr>
<tr>
<td>000E</td>
<td>Initialize failed</td>
</tr>
<tr>
<td>000F</td>
<td>SMART threshold exceeded</td>
</tr>
<tr>
<td>0019</td>
<td>Drive removed</td>
</tr>
<tr>
<td>001A</td>
<td>Drive inserted</td>
</tr>
<tr>
<td>001E</td>
<td>Unit inoperable</td>
</tr>
<tr>
<td>001F</td>
<td>Unit Operational</td>
</tr>
<tr>
<td>0021</td>
<td>Downgrade UDMA mode</td>
</tr>
<tr>
<td>0022</td>
<td>Upgrade UDMA mode</td>
</tr>
<tr>
<td>0023</td>
<td>Sector repair completed</td>
</tr>
<tr>
<td>0024</td>
<td>Buffer integrity test failed</td>
</tr>
<tr>
<td>0025</td>
<td>Cache flush failed; some data lost</td>
</tr>
</tbody>
</table>
Table 14: Error and Notification Message List

<table>
<thead>
<tr>
<th>Value</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0026</td>
<td>Drive ECC error reported</td>
</tr>
<tr>
<td>0027</td>
<td>DCB checksum error detected</td>
</tr>
<tr>
<td>0028</td>
<td>DCB version unsupported</td>
</tr>
<tr>
<td>0029</td>
<td>Verify started</td>
</tr>
<tr>
<td>002A</td>
<td>Verify failed</td>
</tr>
<tr>
<td>002B</td>
<td>Verify completed</td>
</tr>
<tr>
<td>002C</td>
<td>Source drive ECC error overwritten</td>
</tr>
<tr>
<td>002D</td>
<td>Source drive error occurred</td>
</tr>
<tr>
<td>002E</td>
<td>Replacement drive capacity too small</td>
</tr>
<tr>
<td>002F</td>
<td>Verify not started; unit never initialized</td>
</tr>
<tr>
<td>0030</td>
<td>Drive not supported</td>
</tr>
<tr>
<td>0032</td>
<td>Spare capacity too small</td>
</tr>
<tr>
<td>0033</td>
<td>Migration started</td>
</tr>
<tr>
<td>0034</td>
<td>Migration failed</td>
</tr>
<tr>
<td>0035</td>
<td>Migration completed</td>
</tr>
<tr>
<td>0036</td>
<td>Verify fixed data/parity mismatch</td>
</tr>
<tr>
<td>0037</td>
<td>SO-DIMM not compatible</td>
</tr>
<tr>
<td>0038</td>
<td>SO-DIMM not detected</td>
</tr>
<tr>
<td>0039</td>
<td>Buffer ECC error corrected</td>
</tr>
<tr>
<td>003A</td>
<td>Drive power on reset detected</td>
</tr>
<tr>
<td>003B</td>
<td>Rebuild paused</td>
</tr>
<tr>
<td>003C</td>
<td>Initialize paused</td>
</tr>
<tr>
<td>003D</td>
<td>Verify paused</td>
</tr>
<tr>
<td>003E</td>
<td>Migration paused</td>
</tr>
<tr>
<td>003F</td>
<td>Flash file system error detected</td>
</tr>
<tr>
<td>0040</td>
<td>Flash file system repaired</td>
</tr>
<tr>
<td>0041</td>
<td>Unit number assignments lost</td>
</tr>
<tr>
<td>0042</td>
<td>Primary DCB read error occurred</td>
</tr>
<tr>
<td>0043</td>
<td>Backup DCB read error detected</td>
</tr>
<tr>
<td>0044</td>
<td>Battery voltage is normal</td>
</tr>
</tbody>
</table>
Table 14: Error and Notification Message List

<table>
<thead>
<tr>
<th>Value Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0045 Battery voltage is low</td>
</tr>
<tr>
<td>0046 Battery voltage is high</td>
</tr>
<tr>
<td>0047 Battery voltage is too low</td>
</tr>
<tr>
<td>0048 Battery voltage is too high</td>
</tr>
<tr>
<td>0049 Battery temperature is normal</td>
</tr>
<tr>
<td>004A Battery temperature is low</td>
</tr>
<tr>
<td>004B Battery temperature is high</td>
</tr>
<tr>
<td>004C Battery temperature is too low</td>
</tr>
<tr>
<td>004D Battery temperature is too high</td>
</tr>
<tr>
<td>004E Battery capacity test started</td>
</tr>
<tr>
<td>004F Cache synchronization skipped</td>
</tr>
<tr>
<td>0050 Battery capacity test completed</td>
</tr>
<tr>
<td>0053 Battery capacity test is overdue</td>
</tr>
<tr>
<td>0055 Battery charging started</td>
</tr>
<tr>
<td>0056 Battery charging completed</td>
</tr>
<tr>
<td>0057 Battery charging fault</td>
</tr>
<tr>
<td>0058 Battery capacity is below warning level</td>
</tr>
<tr>
<td>0059 Battery capacity is below error level</td>
</tr>
<tr>
<td>005A Battery is present</td>
</tr>
<tr>
<td>005B Battery is not present</td>
</tr>
<tr>
<td>005C Battery is weak</td>
</tr>
<tr>
<td>005E Cache synchronization completed</td>
</tr>
<tr>
<td>005F Cache synchronization failed; some data lost</td>
</tr>
<tr>
<td>0062 Enclosure removed</td>
</tr>
<tr>
<td>0063 Enclosure added</td>
</tr>
<tr>
<td>0064 Local link up</td>
</tr>
<tr>
<td>0065 Local link down</td>
</tr>
<tr>
<td>0066 Reverted to emergency recovery firmware</td>
</tr>
<tr>
<td>0070 Drive write fault; some data lost</td>
</tr>
<tr>
<td>0081 RAID key not found</td>
</tr>
</tbody>
</table>
Table 14: Error and Notification Message List

<table>
<thead>
<tr>
<th>Value Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0080 All RAID keys failed validation</td>
</tr>
<tr>
<td>8000 Enclosure fan normal</td>
</tr>
<tr>
<td>8001 Enclosure fan error</td>
</tr>
<tr>
<td>8002 Enclosure fan removed</td>
</tr>
<tr>
<td>8003 Enclosure fan added</td>
</tr>
<tr>
<td>8004 Enclosure fan unknown</td>
</tr>
<tr>
<td>8005 Enclosure fan off</td>
</tr>
<tr>
<td>8020 Enclosure temp normal</td>
</tr>
<tr>
<td>8021 Enclosure temp low</td>
</tr>
<tr>
<td>8022 Enclosure temp high</td>
</tr>
<tr>
<td>8023 Enclosure temp below operating</td>
</tr>
<tr>
<td>8024 Enclosure temp above operating</td>
</tr>
<tr>
<td>8025 Enclosure temp removed</td>
</tr>
<tr>
<td>8026 Enclosure temp added</td>
</tr>
<tr>
<td>8027 Enclosure temp critical</td>
</tr>
<tr>
<td>8028 Enclosure temp unknown</td>
</tr>
<tr>
<td>8030 Enclosure power normal</td>
</tr>
<tr>
<td>8031 Enclosure power fail</td>
</tr>
<tr>
<td>8032 Enclosure power removed</td>
</tr>
<tr>
<td>8033 Enclosure power added</td>
</tr>
<tr>
<td>8034 Enclosure power unknown</td>
</tr>
<tr>
<td>8037 Enclosure power off</td>
</tr>
<tr>
<td>8040 Enclosure voltage normal</td>
</tr>
<tr>
<td>8041 Enclosure voltage over</td>
</tr>
<tr>
<td>8042 Enclosure voltage under</td>
</tr>
<tr>
<td>8043 Enclosure voltage unknown</td>
</tr>
<tr>
<td>8044 Enclosure current normal</td>
</tr>
<tr>
<td>8045 Enclosure current over</td>
</tr>
<tr>
<td>8046 Enclosure current unknown</td>
</tr>
<tr>
<td>8047 Enclosure audio alarm activated but mute</td>
</tr>
</tbody>
</table>
Error and Notification Message Details

0001 Controller reset occurred

Event Type
Information

Cause
The device driver has sent a soft reset to the 3ware RAID controller. The driver does this when the controller has not responded to a command within the allowed time limit (30 sec.). After the soft reset command has been sent, the driver will resend the command.

Action
If this message occurs more than three times a day, collect the system logs and contact Technical Support.

See Also
For how to collect the system logs, search the LSI Knowledge Base for keyword 12278 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

0002 Degraded unit

Event Type
Error
Troubleshooting

Cause
An error was encountered and the unit is now operating in degraded (non-redundant) mode. This is usually due to a drive failure or the physical removal of a drive from a redundant unit.

Action
Check hardware connections and reseat the drive or drives. Rescan the controller from 3DM 2 or CLI to see if the unit has been restored. If you are able to restore the unit before any data has been written to the unit, a rebuild will not be necessary. If the unit remains degraded, replace the missing or dead drives and initiate a rebuild.

See Also
“About Degraded Units” on page 144
“Rebuilding Units” on page 160

0003 Controller error occurred

Event Type
Error

Cause
The 3ware RAID controller has encountered an internal error.

Action
Please collect log files and contact LSI Customer Support, as a replacement board may be required. Technical support is reachable at http://www.lsi.com/channel/ContactUs. For information on collecting logs, search the LSI Knowledge Base for keyword 12278 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp

0004 Rebuild failed

Event Type
Error

Cause
The 3ware RAID controller was unable to complete a rebuild operation. This error can be caused by drive errors on either the source or the destination of
the rebuild. However, because ATA drives can reallocate sectors on write errors, the rebuild failure is most likely caused by the source drive of the rebuild detecting a read error.

Action
The default operation of the 3ware RAID controller is to abort a rebuild if an error is encountered. If you want rebuilds to continue when there is a source error, you can set a unit policy to Continue on Source Error When Rebuilding in 3DM 2 or CLI.

The consequence of continuing a rebuild when there is a source error is that there may be corrupt data in your rebuilt unit. In some cases, however, this may be your only alternative for recovering as much data as possible from a unit that has become degraded.

To lower the likelihood of getting this error, schedule regular verifications.

See Also
“Setting Overwrite ECC (Continue on Source Error When Rebuilding)” on page 116.
“Scheduling Background Tasks” on page 169

0005 Rebuild completed

Event Type
Information

Cause
The 3ware RAID controller has successfully completed a rebuild. The data is now redundant.

Action
None required.

0006 Incomplete unit detected

Event Type
Warning

Cause
The 3ware RAID controller has detected an incomplete unit.
An incomplete unit is a unit in which the 3ware RAID controller is unable to
detect one or more drives. The drives may be missing, dead, or improperly
connected. A unit that is incomplete is also degraded (although a degraded
unit can be complete if all drives are still detected, including the failed drive).

Action

Check hardware connections and reseat the drives. Rescan the controller from
3DM 2 to see if the unit has been restored. If you are able to restore the unit
before any data has been written to the unit, a rebuild will not be necessary. If
the unit remains incomplete, replace the missing or dead drives and initiate a
rebuild.

0007 Initialize completed

Event Type

Information

Cause

The 3ware RAID controller completed the “synching” background
initialization sequence of RAID levels 1, 6, 10, 50, or 5. For RAID 5, RAID 6,
and RAID 50, the data on the unit was read and the resultant new parity was
written. For RAID 1 and 10, one half of the mirror was copied to the other
half (mirrors are synchronized).

This message will not appear for a foreground initialization.

See Also

“Foreground Versus Background Initialization” on page 152

0008 Unclean shutdown detected

Event Type

Warning

Cause

The 3ware RAID controller detected an unclean shutdown of the operating
system, either from a power failure or improper shutdown procedure. The
controller will force the unit to begin verifying, due to the possibility that data
on a redundant unit could be out of synchronization.
Action
Allow the verification to complete. Verifications have little overhead in terms of system performance and keep your units in optimum condition.

To prevent unclean shutdowns, always go through the normal shutdown procedure. It is also recommended to use an uninterruptible power supply (UPS) to prevent unclean shutdowns due to sudden power loss.

See Also
“About Verification” on page 155

0009 Drive timeout detected

Event Type
Error

Cause
A drive has failed to respond to a command from a 3ware RAID controller within the allowed time limit (20 secs.). After sending this error message, the controller will attempt to recover the drive by sending a reset to that drive and retrying the failed command.

Possible causes of drive time-outs (also known as ATA-Port time-outs) include a bad or intermittent disk drive, power cable or interface cable.

Action
If you have checked hardware connections and no cause other than the drive can be found, replace the drive.

You may also want to use the drive manufacturer’s diagnostic and repair utilities on the drive.

See Also
For links to drive manufacturer diagnostic utilities and troubleshooting advice, search the LSI Knowledge Base for keyword 14924 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

“Basic Troubleshooting: Check This First” on page 239

000A Drive error detected

Event Type
Error
Cause
A drive has returned an error to the 3ware RAID controller that it is unable to complete a command. The error type is not a time-out (000A) or uncorrected ECC (0026).

This message may be seen as part of a recovery operation initiated by the 3ware RAID controller on the drive. One possible cause is multiple write commands to a sector forcing the drive to remap a defective sector. This message may be seen if error recovery operations initiated by the 3ware RAID controller are unsuccessful.

Action
If you see this message, the drive repairs may lie outside of the 3ware RAID controller’s abilities. Try running the drive manufacturer’s diagnostic and repair utilities on the drive.

If necessary, replace the drive.

See Also
For links to drive manufacturer diagnostic utilities and troubleshooting advice, search the LSI Knowledge Base for keyword 10894 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp

000B Rebuild started

Event Type
Information

Cause
The 3ware RAID controller started to rebuild a degraded unit. The rebuild may have been initiated by you, may have started automatically on a hot spare or may have started after drive removal or insertion (due to the Auto Rebuild policy).

Action
Allow the rebuild to complete. This will return the unit to its normal redundant state.

See Also
“Scheduling Background Tasks” on page 169
“Rebuilding Units” on page 160
“Background Task Prioritization” on page 169
000C Initialize started

Event Type
Information

Cause
The 3ware RAID controller started an initialization. This is always a “synching” background initialization and does not erase user data. Initialization either occurs at unit creation time for larger RAID 5, 6, or 50 units or later during the initial verification of redundant units.

Action
Allow the initialization to complete. This will return the unit to its normal redundant state.

See Also
For more information, see “About Initialization” on page 152

000E Initialize failed

Event Type
Error

Cause
The 3ware RAID controller was unable to complete the initialization. This error can be caused by unrecoverable drive errors.

If this unit was a redundant unit, and the initialization failed because of a problem on a particular disk drive, then the unit will be degraded.

Action
If the unit was degraded, then rebuild the unit. This may necessitate replacing the drive.

Check physical cable and power connections. You can also run the drive manufacturer’s diagnostic and repair utilities on the drive.

See Also
For links to drive manufacturer diagnostic utilities and troubleshooting advice, search the LSI Knowledge Base for keyword 10894 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp
"Basic Troubleshooting: Check This First" on page 239

000F SMART threshold exceeded

Event Type
Warning

Cause
SMART monitoring is predicting a potential drive failure.
The 3ware RAID controller supports SMART monitoring for SATA and SAS drives, whereby the individual drives automatically monitor certain parametric information such as error rates and retry counts. This type of monitoring may be able to predict a drive failure before it happens, allowing you to schedule service of the unit before it becomes degraded. The SMART status of each drive attached to the 3ware RAID controller is monitored daily.

Action
LSI recommends that you replace any drive that has exceeded the SMART threshold.
If the drive is part of a redundant unit, remove the drive through 3DM 2 or CLI. Replace the drive and start a rebuild.
If the drive is not part of a redundant unit, then you will need to backup your data before replacing the drive.

See Also
“Viewing SMART Data About a Drive” on page 150
“Rebuilding Units” on page 160

0019 Drive removed

Event Type
Warning

Cause
A drive was physically removed from the controller while the controller was powered on.
Action

If the drive is not part of a redundant unit, return the drive as soon as possible. You may need to rescan the controller to have the drive recognized. If at all possible, do not remove a drive from a non-redundant unit as this may cause data loss or a system hang.

001A Drive inserted

Event Type

Information

Cause

A drive was connected to the controller while the controller was powered on.

Action

The drive is now available for use. If the drive is part of a unit add the remaining drives and rescan the controller, in 3DM 2 or CLI, to bring the unit online.

001E Unit inoperable

Event Type

Error

Cause

The 3ware RAID controller is unable to detect sufficient drives for the unit to be operable. Some drives have failed or are missing.

Examples of inoperable units are as follows:

- RAID 0 missing any drives.
- A RAID 5 or 50 unit with two or more drives missing from the same RAID 5 unit or subunits.
- A RAID 10 unit with both drives missing from one of the RAID 1 subunits.
- A RAID 6 unit with three or more drives missing.

Note: The controller only generates this message if the unit is missing drives for more than 20 seconds. This allows a hot swap of a drive to be completed without generating this error.
Action
The unit is no longer available for use. Return all missing drives to the unit. If the drives are physically present, check all data and power connections.

CAUTION: Do not delete the inoperable unit and recreate it as this will overwrite the data and make data recovery very difficult.

You may wish to contact technical support at http://www.lsi.com/channel>ContactUs.

See Also
“About Inoperable Units” on page 145

001F Unit Operational

Event Type
Information

Cause
Drive insertion caused a unit that was inoperable to become operational again. Any data that was on that unit will still be there. This message is only sent if the unit was inoperable for more than 20 seconds. That means that if the hot swap of a drive occurred within 20 seconds, messages are not generated.

Action
None Required. The unit is available for use.

0021 Downgrade UDMA mode

Event Type
Warning

Cause
The 3ware RAID controller has downgraded the UDMA transfer rate between the controller and the ATA disk drives. This message only applies to parallel ATA and certain legacy serial ATA drives.

Background Information
The 3ware RAID controller communicates to the ATA disk drives through the Ultra DMA (UDMA) protocol. This protocol ensures data integrity across the ATA cable by appending a Cyclical Redundancy Check (CRC) for all ATA data that is transferred. If the data becomes corrupted between the drive and
the 3ware RAID controller (because of an intermittent or poor quality cable connection) the 3ware RAID controller detects this as a UDMA CRC or cable error. The 3ware RAID controller then retries the failed command three times at the current UDMA transfer rate. If the error persists, it lowers the UDMA transfer rate (for example, from UDMA 100 to UDMA 66) and retries another three times.

Action

Check for possible causes of UDMA CRC errors such as defective or poor quality interface cables or cable routing problems through electrically noisy environments (for instance, cables are too close to the power supply). Also check for cables which are not standard or exceed the ATA specification. A list of cables for use with 3ware controllers is available at http://www.lsi.com/channel/products/raid_controllers/accessories/cables.

0022 Upgrade UDMA mode

Event Type

Warning

Cause

During a self-test, the controller found that a drive was not in the optimal UDMA mode and upgraded its UDMA transfer rate.

Action

None required. The drive and cable are working in optimal mode.

0023 Sector repair completed

Event Type

Warning

Cause

The 3ware RAID controller moved data from a bad sector on the drive to a new location.

Background Information

The 3ware RAID controller supports a feature called dynamic sector repair that allows the unit to recover from certain drive errors that would normally result in a degraded unit situation. For redundant units such as RAID 1, 5, 6, 10, and 50, the 3ware RAID controller essentially has two copies of your data.
available. If a read command to a sector on a disk drive results in an error, it reverts to the redundant copy in order to satisfy the host’s request. At this point, the 3ware RAID controller has a good copy of the requested data in its cache memory. It will then use this data to force the failing drive to reallocate the bad sector, which essentially repairs the sector.

Action

Sector repairs are an indication of the presence of grown defects on a particular drive. While typical modern disk drives are designed to allow several hundred grown defects, special attention should be paid to any drive in a unit that begins to indicate sector repair messages. This may be an indication of a drive that is beginning to fail. You may wish to replace the drive, especially if the number of sector repair errors exceeds 3 per month.

0024 Buffer integrity test failed

Event Type

Error.

Cause

The 3ware RAID controller performs diagnostics on its internal RAM devices as part of its data integrity features. Once a day, a non-destructive test is performed on the cache memory. Failure of the test indicates a failure of a hardware component on the 3ware RAID controller. This message is sent to notify you of the problem.

Action

You should replace the 3ware RAID controller.

If the controller is still under warranty, contact 3ware Technical Support for a replacement controller.

0025 Cache flush failed; some data lost

Event Type

Error

Cause

The 3ware RAID controller was not able to commit data to the drive(s) during a caching operation. This is due to a serious drive failure, possibly from a power outage.
Background Information

The 3ware RAID controller uses caching layer firmware to improve performance. For write commands this means that the controller acknowledges it has completed a write operation before the data is committed to disk. If the 3ware RAID controller cannot commit the data to the drive after it has acknowledged to the host, this message is posted.

Action

To troubleshoot the reasons for the failure, collect the logs for your system and contact 3ware technical support at http://www.lsi.com/channel/ContactUs. For information on collecting logs, search the LSI Knowledge Base for keyword 12278 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

0026 Drive ECC error reported

Event Type

Error

Cause

Drive ECC errors are an indication of grown defects on a particular drive. For redundant units, this typically means that dynamic sector repair has been invoked (see message “0023 Sector repair completed” on page 261). For non-redundant units (Single Disk, RAID 0 and degraded units), which do not have another copy of the data, drive ECC errors result in the 3ware RAID controller returning failed status to the associated host command.

Action

Schedule periodic verifications of all units so that drive ECC errors can be found and corrected. If the unit is non-redundant a unit file system check is recommended.

Under Windows, right-click on your drive icon and choose Properties>Tools>Check Now.

Under Linux use fsck /dev/sda1. If you have more than one SATA device, substitute the correct drive letter and partition number, such as sdb2, for sda1.

See Also

“Enabling or Disabling Auto Verify for a Unit” on page 115
“Scheduling Background Tasks” on page 169
0027 DCB checksum error detected

Event Type
Error

Cause
The drive’s Drive Configuration Block (DCB) has been corrupted.
The 3ware RAID controller stores certain configuration parameters on a reserved area of each disk drive called the Drive Configuration Block. As part of power-on initialization, the 3ware RAID controller performs a checksum of the DCB area to ensure consistency.

Action
If this error occurs, please contact 3ware technical support at http://www.lsi.com/channel/ContactUs for assistance.

0028 DCB version unsupported

Event Type
Error

Cause
The unit that is connected to your 3ware RAID controller was created on a legacy 3ware product that is incompatible with your new controller.
During the evolution of the 3ware product line, the format of the Drive Configuration Block (DCB) has been changed to accommodate new features. The DCB format expected by the 3ware RAID controller and the DCB that is written on the drive must be compatible. If they are not, this message is sent.

Action
Return the drives back to their original controller and contact 3ware technical support at http://www.lsi.com/channel/ContactUs for further assistance.
0029 Verify started

Event Type
Information

Cause
The 3ware RAID controller has started verifying the data integrity of a unit. The verification functions for different RAID levels are as follows:
- **Single.** Verify = Media scan
- **RAID 0.** Verify = Media scan
- **RAID 1 and 10.** Verify = Comparison of mirror sides
- **RAID 5, 6, and 50.** Verify = Comparison of parity data with user data

Action
Allow verify to complete to identify any possible data integrity issues.

See Also
For information on scheduling a verify process, see “Scheduling Background Tasks” on page 169. For information on verification of a unit, see “About Verification” on page 155.

002A Verify failed

Event Type
Error

Cause
Verification of a unit has terminated with an error. For each RAID level being verified, this may mean:
- **Single.** A single drive returned an error, possibly because of a media defect.
- **RAID 0.** A single drive returned an error, possibly because of a media defect.
- **RAID 1 and 10.** One side of the mirror does not equal the other side.
- **RAID 5, 6, and 50.** The parity data does not equal the user data.

For any RAID type, the most likely cause of the error is a grown defect in the drive. For out-of-synchronization mirrors or parity, the error could be caused by improper shutdown of the unit. This possibility applies to RAID 1, 5, 6, 10, and 50.
Troubleshooting

Action

When a verify fails, redundant units will automatically resynchronize user data through a background initialization. The initialize will not erase user data, but will recalculate and rewrite user parity data.

If the unit was non-redundant, any data in the error location is lost. (However, the error could be in a part of the drive that did not contain data.) A unit file system check is recommended.

Under Windows, right-click on your drive icon and choose **Properties > Tools > Check Now**.

Under Linux use `fsck /dev/sda1`. If you have more than one SATA device, substitute the correct drive letter and partition number, such as sdb2, for sda1.

The resynchronization of data that takes place during a background initialization can slow down access to the unit. Once initialization has begun, it cannot be canceled. You can pause it, however, by scheduling it to take place during off-hours. For more information, see “Scheduling Background Tasks” on page 169. You can also set the initialization process to go slower and use fewer system resources. For more information, see “Setting Background Task Rate” on page 168. (Initialization occurs at the Rebuild rate.)

See Also

“About Initialization” on page 152

002B Verify completed

Event Type

Information

Cause

Verification of the data integrity of a unit was completed successfully.

See Also

“About Verification” on page 155
002C Source drive ECC error overwritten

Event Type
Error

Cause
A read error was encountered during a rebuild and the controller is configured to ‘ignore ECC’ or to ‘Force continue on source errors’. The sector in error was reallocated. This will cause uncorrectable blocks to be rewritten, but the data may be incorrect.

Action
It is recommended that you execute a file system check when the rebuild completes.

Under Windows, right-click on your drive icon and choose Properties>Tools> Check Now.

Under Linux use fsck /dev/sda1. If you have more than one SATA device, substitute the correct drive letter and partition number, such as sdb2, for sda1.

002D Source drive error occurred

Event Type
Error

Cause
An error on the source drive was detected during a rebuild operation. The rebuild has stopped as a result.

Action
The controller will report an error, even if the area of the source drive that had the error did not contain data. Scheduling regular verifies will lessen the chance of getting this error.

You can force the rebuild to continue by setting the Overwrite ECC Error policy through 3DM 2, 3BM, or CLI, and then rebuilding the unit again. This will cause uncorrectable blocks to be rewritten, but the data may be incorrect. It is recommended that you execute a file system check when the rebuild completes.

Under Windows, right-click on your drive icon and choose Properties>Tools> Check Now.
Under Linux use `fsck /dev/sda1`. If you have more than one SATA device, substitute the correct drive letter and partition number, such as sdb2, for sda1.

See Also

“Starting a Verify Manually” on page 158

“Enabling or Disabling Auto Verify for a Unit” on page 115

“Setting Overwrite ECC (Continue on Source Error When Rebuilding)” on page 116

002E Replacement drive capacity too small

Event Type

Error

Cause

The storage capacity of the drive you are using as a replacement drive is too small and cannot be used.

Action

Use a replacement drive equal to or larger than the drives already in use.

002F Verify not started; unit never initialized

Event Type

Warning

Cause

A verify operation has been attempted by the 3ware RAID controller, but the unit has never been initialized before. The unit will automatically transition to initializing mode and then start a verify.

Action

None required.

This is considered a normal part of operation. Not all types of RAID units need to be initialized in order to have full performance. The initialize will not erase user data, but will calculate and write parity data or mirror data to the drives in the unit.
See Also

“About Initialization” on page 152

0030 Drive not supported

Event Type
Error

Cause
3ware 8000 and 9500S Serial ATA controllers only support UltraDMA-100/133 drives when using the parallel-to-serial ATA converter. This message indicates that an unsupported drive was detected during rollcall or a hot swap. This message could also indicate that the parallel-to-serial converter was jumpered incorrectly.

Action
Use a parallel ATA drive which supports UDMA 100 or 133 and check that the parallel-to-serial converter was correctly jumpered to correspond to UDMA 100 or 133 drives.

See Also
For a list of compatible drives, see the Interoperability list on http://www.lsi.com/channel/support/marketing_resources, through the Data & Interoperability tab.

0032 Spare capacity too small

Event Type
Warning

Cause
There is a valid hot spare but the capacity is not sufficient to use it for a drive replacement in existing units.

Action
Replace the spare with a drive of equal or larger capacity than the existing drives.
0033 Migration started

Event Type
Information

Cause
The 3ware RAID controller has started the migration of a unit.
Migration changes can include:
• Expanding capacity of a unit by adding drives
• Changing RAID levels, for example, from RAID 1 to RAID 5

See Also
“RAID Level Migration (RLM) Overview” on page 123

0034 Migration failed

Event Type
Error

Cause
The migration of a unit has failed.
Migration changes can include:
• Expanding capacity of a unit by adding drives.
• Changing RAID levels, for example, from RAID 1 to RAID 5

Action
Review the list of events on the Alarms page for other entries that may give you an idea of why the migration failed (for example, a drive error on a specific port).
You may also wish to get the logs and contact technical support at http://wwwlsi.com/channel/ContactUs. For information on collecting logs, search the LSI Knowledge Base for keyword 12278 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

See Also
“RAID Level Migration (RLM) Overview” on page 123
0035 Migration completed

Event Type
Information

Cause
The migrated unit is now ready to be used.

Migration changes can include:
- Expanding capacity of a unit by adding drives
- Changing RAID levels, for example, from RAID 1 to RAID 5.

Action
If the capacity of the unit did not change, then you do not need to do anything else. If the capacity of the migrated unit is larger, you will need to inform the operating system of the change. See “Informing the Operating System of Changed Configuration” on page 127.

0036 Verify fixed data/parity mismatch

Event Type
Warning

Cause
A verify error was found and fixed by the 3ware RAID controller.

Some examples of errors that can be fixed include:
- A parity inconsistency for a RAID 5 or RAID 50 unit.
- A data mismatch for a RAID 1 or RAID 10 unit.

Action
None required.

0037 SO-DIMM not compatible

Event Type
Error
Cause
There is incompatible SO-DIMM memory connected to the 9500S controller.

Note: This message only applies to the 3ware 9500S controller, which has removable memory. Other 3ware controller models do not have memory that can be removed.

Action
Replace the incompatible SO-DIMM with a compatible one.

See Also
For a list of SODIMMs compatible with the 9500S, search the LSI Knowledge Base for keyword 11748 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp

0038 SO-DIMM not detected

Event Type
Error

Cause
The 3ware 9500S RAID controller is inoperable due to missing SO-DIMM memory.

Note: This message only applies to the 3ware 9500S controller, which has removable memory. Other 3ware controller models do not have memory that can be removed.

Action
Install a compatible SO-DIMM on the controller.

See Also
For a list of SODIMMs compatible with the 9500S, search the LSI Knowledge Base for keyword 11748 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp.

0039 Buffer ECC error corrected

Event Type
Warning
Cause
The controller has detected and corrected a memory ECC error.

Action
None required.
If errors persist, contact technical support at http://www.lsi.com/channel/ContactUs.

003A Drive power on reset detected

Event Type
Error

Cause
The controller has detected that a drive has lost power and then restarted. The controller may degrade the unit if it is a redundant unit (non-redundant units cannot be degraded).

Action
If this drive was the only one to lose power, check the cable connections. Also, check that your power supply is adequate for the type and number of devices attached to it.

See Also
For troubleshooting information and a link to drive manufacturer diagnostic utilities, search the LSI Knowledge Base for keyword 14927 (use the Advanced Search) at https://selfservice.lsi.com/service/main.jsp

003B Rebuild paused

Event Type
Information

Cause
The rebuild operation is paused.
Rebuilds are normally paused for two (formerly ten) minutes after a system first boots up and during non-scheduled times when scheduling is enabled. Disabling or modifying the schedule with 3DM 2 or CLI will allow the rebuild to resume.
See Also
“Scheduling Background Tasks” on page 169

003C Initialize paused

Event Type
Information

Cause
The initialization is paused.
Initializations are normally paused for two (formerly ten) minutes after a system first boots up. Initialization is also paused during non-scheduled times when scheduling is enabled. Initializations follow the rebuild schedule.

Action
If you want the initialize to resume, you can disable or modify the schedule through 3DM 2 or CLI.

See Also
“Viewing Current Task Schedules” on page 171
“About Initialization” on page 152

003D Verify paused

Event Type
Information

Cause
The verify operation is paused.
Verifies are normally paused for 2 (formerly 10) minutes after a system first boots up. Verifies are also paused during non-scheduled times when scheduling is enabled.

Action
If you want the verification to resume, you can disable or modify the schedule through 3DM 2 or CLI
See Also
“About Verification” on page 155
“Scheduling Background Tasks” on page 169

003E Migration paused

Event Type
Information

Cause
Migration is paused. Migration follows the rebuild schedule.

Action
If you want the migration to resume, you can disable or modify the schedule through 3DM 2 or CLI.

See Also
“RAID Level Migration (RLM) Overview” on page 123
“Scheduling Background Tasks” on page 169

003F Flash file system error detected

Event Type
Warning

Cause
A corrupted flash file system was found on the 3ware RAID controller during boot-up.
The 3ware RAID controller stores configuration parameters as files in its flash memory. These files can be corrupted when a flash operation is interrupted by events such as a power failure. The controller will attempt to restore the flash files from a backup copy.

Action
Update to the latest firmware, as earlier firmware resets corrupted files to default settings.
We recommend using 3DM 2, 3BM, or CLI to check your settings, in case they were not able to be restored.
0040 Flash file system repaired

Event Type
Information

Cause
A corrupted flash file system has been successfully repaired.
Some of the flash files with insufficient data may have been lost in the operation. The configuration parameters which are lost will then return to their default values.

Action
We recommend using 3DM 2, 3BM, or CLI to check your settings, in case they were not able to be restored.

0041 Unit number assignments lost

Event Type
Warning

Cause
The unit number assignments have been lost.
This may have occurred as a result of a soft reset.

Action
Please contact LSI 3ware technical support at http://www.lsi.com/channel/ContactUs

0042 Primary DCB read error occurred

Event Type
Warning

Cause
The controller found an error while reading the primary copy of the Disk Configuration Block (DCB).
The controller will attempt to correct the error by reading the back-up copy of the DCB. If a valid DCB is found, the primary DCB is re-written to rectify the errors.

Action

LSI recommends verifying the unit. See “Starting a Verify Manually” on page 158.

0043 Backup DCB read error detected

Event Type

Warning

Cause

The controller has detected a latent error in the backup Disk Configuration Block (DCB).

The 3ware RAID controller checks the backup DCB, even when the primary DCB is OK. If an error is found, the controller will attempt to correct the error by reading the primary copy. If the primary copy is valid, the backup DCB will be rewritten to rectify the errors.

Action

LSI recommends verifying the unit. See “Starting a Verify Manually” on page 158.

0044 Battery voltage is normal

Event Type

Information

Cause

The battery pack voltage being monitored by the Battery Backup Unit fell outside of the acceptable range and then came back within the acceptable range.

Action

None required
0045 Battery voltage is low

Event Type
Warning

Cause
The battery pack voltage being monitored by the Battery Backup Unit has fallen below the warning threshold.

Action
The Battery Backup Unit is presently still able to backup the 3ware RAID controller, but you should replace the battery pack if the warning continues.

0046 Battery voltage is high

Event Type
Warning

Cause
The battery pack voltage being monitored by the Battery Backup Unit has risen above the warning threshold.

Action
The Battery Backup Unit is presently still able to backup the 3ware RAID controller, but you should replace the battery pack if the warning continues.

0047 Battery voltage is too low

Event Type
Error

Cause
The battery pack voltage being monitored by the Battery Backup Unit is too low to backup the 3ware RAID controller.

You may see this message during a battery capacity test. In this case, it is not a sign of battery failure.

You may also see this message if the battery pack is plugged in while the computer is on. This is not advised.
Action
Replace the battery pack if none of the above causes apply and the warning continues.

0048 Battery voltage is too high

Event Type
Error

Cause
The battery pack voltage being monitored by the Battery Backup Unit is too high to backup the 3ware RAID controller.

Action
The battery pack must be replaced.
This may be a fault in the BBU control module. If you get this error, do the following:
1. Turn off the computer and remove the 3ware RAID controller.
2. Remove the BBU control module from the 3ware RAID controller and the battery module from the remote card.
3. Unplug the battery from the control module.
4. Return the BBU control module and battery module to 3ware.
For more details on removing the BBU, see the installation guide that came with your 3ware RAID controller.

0049 Battery temperature is normal

Event Type
Information

Cause
The battery pack temperature being monitored by the Battery Backup Unit fell outside of the acceptable range and then came back within the acceptable range.

Action
None required
004A Battery temperature is low

Event Type
Warning

Cause
The battery pack temperature being monitored by the Battery Backup Unit has fallen below the acceptable range. The most likely cause is ambient temperature.

Action
The Battery backup Unit is presently still able to backup the 3ware RAID controller, but you should replace the battery pack if the temperature warning persists and is not due to environmental reasons.

004B Battery temperature is high

Event Type
Error

Cause
The battery pack temperature being monitored by the Battery Backup Unit has risen above the acceptable range. However, the BBU is still able to backup the 3ware RAID controller.

Action
Check for sufficient airflow around the card. To increase airflow you can:
- Leave the PCI slots next to the controller empty
- Add fans to your computer case
- Move and bundle wiring that is blocking air circulation

The Battery Backup Unit is presently still able to backup the 3ware RAID controller, but you should replace the battery pack if the temperature warning persists.

Contact 3ware technical support at http://www.lsi.com/channel/ContactUs if this problem is not due to environmental reasons or improper case cooling.
004C Battery temperature is too low

Event Type
Error

Cause
The battery pack temperature being monitored by the Battery Backup Unit is too low.
The BBU is unable to backup the 3ware RAID controller.

Action
Contact 3ware technical support at http://www.lsi.com/channel/ContactUs.
The battery pack must be replaced if the problem persists and is not due to environmental reasons.

004D Battery temperature is too high

Event Type
Error

Cause
The battery pack temperature being monitored by the Battery Backup Unit is too high.
The BBU is unable to backup the 3ware RAID controller.

Action
Check for sufficient airflow around the card. To increase airflow you can:
- Leave the PCI slots next to the controller empty
- Add fans to your computer case
- Move and bundle wiring that is blocking air circulation

Contact 3ware technical support at http://www.lsi.com/channel/ContactUs if this problem is not due to environmental reasons or improper case cooling.

004E Battery capacity test started

Event Type
Information
Troubleshooting

Cause
A battery test was started through CLI or 3DM 2.

Background Information
The test estimates how many hours the Battery Backup Unit will be able to back up the 3ware RAID controller in case of a power failure.

This test performs a full battery charge/discharge/re-charge cycle and may take up to 20 hours to complete. During this test the Battery Backup Unit cannot backup the 3ware RAID controller. In addition, all units have their write cache disabled until the test completes.

Action
None required.

See Also
See the Install Guide for your controller.

004F Cache synchronization skipped

Event Type
Warning

Cause
The cache synchronization that is normally performed when power is restored after a power failure was skipped and write data is still being backed up in the controller cache. This can occur if a unit was physically removed or became inoperable during the power outage.

Action
Return missing drive(s) to the controller so that the missing write data can be saved.

0050 Battery capacity test completed

Event Type
Information

Cause
The Battery Backup Unit has completed a battery capacity test.
The BBU is again able to backup the 3ware RAID controller and write cache has been re-enabled for all units. (During the test, backup and write cache were disabled).

0053 Battery capacity test is overdue

Event Type
Information

Cause
There has not been a battery capacity test run in the last 6 months, which is the maximum recommended interval. This message will be sent once every week until the test is run.

Action
LSI recommends running the test at least once every 6 months, if the measured battery capacity is longer than 120 hours. If the measured battery capacity is less than 120 hours the recommended test interval is 4 weeks.

0055 Battery charging started

Event Type
Information

Cause
The Battery Backup Unit has started a battery charge cycle.

Action
None required

0056 Battery charging completed

Event Type
Information

Cause
The Battery Backup Unit has completed a battery charge cycle.
0057 Battery charging fault

Event Type
Error

Cause
The Battery Backup Unit has detected a battery fault during a charge cycle. The Battery Backup Unit is not ready and is unable to backup the 3ware RAID controller.

Action
Replace the battery pack.

See Also
See the Install Guide for your controller.

0058 Battery capacity is below warning level

Event Type
Information

Cause
The measured capacity of the battery is below the warning level. The Battery Backup Unit is presently still able to backup the 3ware RAID controller, but it is weakening.

Action
Replace the battery pack if the warnings persist.

See Also
See the Install Guide for your controller.

0059 Battery capacity is below error level

Event Type
Error
Cause
The measured capacity of the battery is below the error level. The Battery Backup Unit is not ready and is unable to backup the 3ware RAID controller.

Action
Replace the battery pack.

See Also
See the Install Guide for your controller.

005A Battery is present

Event Type
Information

Cause
A battery pack is connected to the 3ware RAID controller.

005B Battery is not present

Event Type
Error

Cause
The battery pack has been removed from the 3ware RAID controller.

Action
Reinstall the battery pack.

005C Battery is weak

Event Type
Warning

Cause
The Battery Backup Unit periodically evaluates the health of the battery and its ability to backup the 3ware RAID controller in case of a power failure.
This message is posted when the result of the health test is below the warning threshold.

Action
Replace the battery pack if warnings persist.

005E Cache synchronization completed

Event Type
Information

Cause
The 3ware RAID controller performs cache synchronization when system power is restored following a power failure. This message is posted for each unit when the cache synchronization completes successfully.

You will also see this message if drive insertion causes a unit to become operational and retained write cache data was flushed.

005F Cache synchronization failed; some data lost

Event Type
Error

Cause
The 3ware RAID controller performs cache synchronization when system power is restored following a power failure. The cache synchronization was not successful for some reason.

0062 Enclosure removed

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.

An enclosure is no longer accessible to the RAID controller. The likely cause is that the enclosure has been powered down or that a cable has been unplugged.
0063 Enclosure added

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
An enclosure is now accessible to the RAID controller. The likely cause is that an enclosure connected to the controller has been powered up or that a cable has been plugged in.

0064 Local link up

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
A cable has been plugged in, restoring a link to a controller phy.

0065 Local link down

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
A cable has been unplugged, removing a link to a controller phy.

0066 Reverted to emergency recovery firmware

Event Type
Information.

Cause
The main firmware image is corrupted because the firmware upgrade was interrupted by a power failure, or the firmware update was not able to successfully complete.
Troubleshooting

Action
Retry the firmware update; if not successful, call technical support.

0070 Drive write fault; some data lost

Event Type
Error.

Cause
A SAS or SATA drive reported this error asynchronously. Some data loss might have occurred if you are using StorSave Performance mode.

Action
Recommend replacing the drive that reported this error.

0080 All RAID keys failed validation

Event Type
Error.

Cause
A RAID key was detected but validation failed or the OEM code is not correct. Drive detection has been disabled.

Action
Call technical support.
0081 RAID key not found

Event Type
Error.

Cause
The RAID key could not be read from the controller. Drive detection has been disabled.

Action
Call technical support; the board will likely need to be replaced.

8000 Enclosure fan normal

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers. The fan’s performance or operation is now back within the acceptable range.

Action
None required.

8001 Enclosure fan error

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers. The enclosure fan is not functioning normally and may be blocked or defective.

Action
Check that the fan or fans are not blocked. If a fan appears defective, replace it as soon as possible.
For information on replacing a fan, see your enclosure documentation or contact your enclosure manufacturer.

8002 Enclosure fan removed

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
A fan has either been removed or has become unplugged.

Action
Replace or reseat fan and make sure it is operational. An insufficient number of operating fans may lead to overheating of the components in the enclosure.

8003 Enclosure fan added

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
A fan has been added to the enclosure or an existing fan has been plugged in.

Action
None required.

8004 Enclosure fan unknown

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure is unable to recognize the fan. The fan may not be seated correctly or may be malfunctioning.
Action
Reseat the fan.
If it is necessary to replace the fan, see your enclosure documentation or contact your enclosure manufacturer.

8005 Enclosure fan off

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
An enclosure fan has been turned off. It is no longer cooling the enclosure.

Action
The enclosure normally controls the on/off function of the fan. If there is no over-heating problem, no action is necessary.

8020 Enclosure temp normal

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure temperature is now back within the acceptable range.

Action
None required.

8021 Enclosure temp low

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure temperature is lower than normal.

Action
In general, cooler operating temperatures are good for enclosure components. However, if the temperature is very cold, condensation can occur and cause media errors and damage. Take steps to bring the operating environment back within the enclosure manufacturer’s specifications.
Allow cold equipment to warm up gradually before powering on.

8022 Enclosure temp high

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure temperature is higher than normal.

Action
Take steps to lower the enclosure temperature, such as adding fans, clearing enclosure openings of blockages, and increased ventilation.
Make sure that the enclosure environment does not get any hotter. See your enclosure documentation or contact your enclosure manufacturer to ensure that you are adhering to proper operating conditions and environments.

8023 Enclosure temp below operating

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure temperature is below the enclosure manufacturer’s specified operating temperature.

Action
In general, cooler operating temperatures are good for enclosure components.
However, if the temperature is very cold, condensation can occur and cause media errors and damage. Take steps to bring the operating environment back within the enclosure manufacturer’s specifications.

Allow cold equipment to warm up gradually before powering on.

8024 Enclosure temp above operating

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure temperature is above the enclosure manufacturer’s specified operating temperature.

Action
Make sure that the fans are operational. Check for blocked ventilation in the enclosure and the operating environment.

Continued operation of the enclosure at high temperatures may lead to data loss and operational failure.

8025 Enclosure temp removed

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
The temperature sensor in the enclosure has been removed or has failed and the enclosure temperature is no longer being monitored.

Action
The temperature sensor should be replaced or repaired. This may require specialized skills. Contact your enclosure manufacturer for more information.
8026 Enclosure temp added

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
A temperature sensor has been added to the enclosure or an existing sensor has been plugged in. This error message can occur due to a poor connection.

Action
If due to a poor connection, the repair will require specialized skills. Contact your enclosure manufacturer for more information.

8027 Enclosure temp critical

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
The temperature in the enclosure is dangerously out of the recommended operating range.

Action
Take immediate steps to correct the temperature problem.
Take steps to lower the enclosure temperature, such as adding fans, clearing enclosure openings of blockages, and increased ventilation of the operating environment.
Continued operation of the enclosure at high temperatures may lead to data loss and operational failure.
See your enclosure documentation or contact your enclosure manufacturer to make sure you are following proper operating procedures.

8028 Enclosure temp unknown

Event Type
Warning.
Error and Notification Messages

Cause
Applies to 9750 and 9690SA controllers.
The enclosure is reporting that it is unable to determine the temperature of the unit. This may be due to a failed or missing sensor.

Action
Check the operational status of the temperature sensor. If it has failed, replace it.
See your enclosure documentation or contact your enclosure manufacturer for more information.

8030 Enclosure power normal

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure power supply is now back within the acceptable range.

Action
None required.

8031 Enclosure power fail

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
One of the enclosure power supplies is not working. Either a power supply has failed or a cord is unplugged.

Action
Reseat the power supply cord. Replace any failed power supply as soon as possible.
It is recommended to use an uninterruptible power supply (UPS) to protect against power failures.
8032 Enclosure power removed

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
One of the enclosure power supplies has been removed from the enclosure or a power supply is unplugged.

Action
Return or reconnect the power supply as soon as possible.
It is recommended to use an uninterruptible power supply (UPS) to protect against power failures.

8033 Enclosure power added

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
A power supply has been added to the enclosure or an existing power supply has been plugged in.

Action
None required.

8034 Enclosure power unknown

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
There is a power supply in the enclosure, but it is not of a known type.
Action
Check to be sure the power supply is operational by re-seating or replacing the failed power supply. See your enclosure documentation or contact your enclosure manufacturer for more information.

It is recommended to use an uninterruptible power supply (UPS) to protect against power failures.

8037 Enclosure power off

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.

An enclosure power supply has been turned off.

Action
If needed for power supply redundancy or to meet power requirements, turn the power supply back on.

It is recommended to use an uninterruptible power supply (UPS) to protect against power failures.

8040 Enclosure voltage normal

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.

The enclosure power supply voltage is now back within the acceptable range.

Action
None required.
8041 Enclosure voltage over

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure power supply voltage is higher than the normal range.

Action
This error is rare. If you see it you may need a UPS or voltage regulator to stay within the recommended voltage range.

8042 Enclosure voltage under

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure power supply voltage is lower than the normal range. This can be due to a failing power supply or an unreliable power source.

Action
If due to a failing power supply, replace it as soon as possible.
It is recommended to use an uninterruptible power supply (UPS) to protect against power failures.

8043 Enclosure voltage unknown

Event Type
Warning.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure is not reporting voltage data. This can be due to a failing power supply.
Action
If applicable, replace the failed power supply.
Contact your enclosure manufacturer for more information.

8044 Enclosure current normal

Event Type
Information.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure power supply current is now back within the acceptable range.

Action
None required.

8045 Enclosure current over

Event Type
Error.

Cause
Applies to 9750 and 9690SA controllers.
The enclosure power supply amperage is higher than normal.

Action
Replace the failing power supply or remove any extra devices. This may be caused by too many hard drives, which have exceeded the enclosure power specifications. See your enclosure documentation or contact your enclosure manufacturer for more details.

Too much current cannot be corrected by a UPS, although it can provide some protection against a power surge.

8046 Enclosure current unknown

Event Type
Warning.
8047 Enclosure audio alarm activated but mute

Event Type
Error.

Cause
Applies to 9750, 9690SA, and 9650SE controllers.
The enclosure’s audio alarm has been activated, but the audibility is mute.

Action
Check the events listing for other error conditions that may have triggered the alarm.

8048 Enclosure audio alarm failed

Event Type
Error.

Cause
Applies to 9750, 9690SA, and 9650SE controllers.
The enclosure’s audio alarm has malfunctioned and is not operational.

Action
Refer to the documentation for your enclosure.

8049 Enclosure audio alarm removed

Event Type
Warning.
Cause
Applies to 9750, 9690SA, and 9650SE controllers.
The enclosure’s audio alarm is no longer installed.

Action
None required.

804A Enclosure audio alarm added

Event Type
Information.

Cause
Applies to 9750, 9690SA, and 9650SE controllers.
An audio alarm is now available for the enclosure.

Action
None required.

804B Enclosure audio alarm status unknown

Event Type
Warning.

Cause
Applies to 9750, 9690SA, and 9650SE controllers.
The status of the enclosure’s audio alarm is not known.

Action
Refer to the documentation for the enclosure.
Appendices

The following information is available in the appendices:

- Appendix A, “Glossary” on page 303
- Appendix B, “Software Installation” on page 310
- Appendix C, “Compliance and Conformity Statements” on page 317
- Appendix D, “Warranty, Technical Support, and Service” on page 319
A

Glossary

- **3BM.** 3ware BIOS Manager, used on PC machines. The 3ware BIOS (Basic Input Output System) manager is a basic interface used to view, maintain, and manage 3ware controllers, disks, and units, without having to boot the operating system. 3BM is included with the controller and is updated when the controller firmware is upgraded. The latest firmware and code set is available for download from the 3ware web site: http://www.lsi.com/channel/ChannelDownloads

- **3DM 2.** 3ware Disk Manager. The 3ware disk manager is a web-based graphical user interface that can be used to view, maintain, and manage 3ware controllers, disks, and units. It is available on the 3ware CD that came with your controller and can be downloaded from http://www.lsi.com/channel/ChannelDownloads.

- **3ware.** Named after the 3 computer wares: hardware, software and firmware. A leading brand of high-performance, high-capacity Serial ATA (SATA) and SAS (Serial Attached SCSI) RAID storage solutions.

- **A-Chip.** AccelerATA chip. Automated data ports to handle asynchronous SATA or SAS disk drive interface.

- **Array.** One or more disk drives that appear to the operating system as a single unit. Within 3ware software (3BM and 3DM), arrays are typically referred to as units.

- **Array Roaming.** The process of swapping out or adding in a configured unit without having to shut down the system. This is useful if you need to move the unit to another controller.

- **Auto Verify.** A unit policy that automates the verify process. When enabled, it performs verifies based on the Verify Schedule. It has two modes, Advanced, which has up to seven scheduling slots per week, or Basic, which has one.

- **Background rebuild rate.** The rate at which a particular controller initializes, rebuilds, and verifies redundant units (RAID 1, RAID 5, RAID 6, RAID 10, RAID 50).

- **Boot volume size.** The size to be assigned to volume 0 when creating a unit through 3BM or CLI on a PC machine. Note that the resulting...
volume does not have to be used as a boot volume. However, if the operating system is installed on the unit, it is installed in volume 0.

- **Cache.** See Read Cache and Write Cache.
- **Carve size.** The size over which a unit will be divided into volumes, if auto-carving is enabled.
- **CLI.** Command Line Interface. The 3ware CLI is a text program, rather than a GUI (graphical user interface). It has the same functionality as 3DM 2, and can be used to view, maintain, and manage 3ware controllers, disks, and units.
- **Configuration.** The RAID level set for a unit.
- **Controller.** The physical card from 3ware that you insert into a computer system and connect to your disk drives or enclosure. The controller contains firmware that provides RAID functionality. 3ware makes a number of different models of SATA RAID controllers.
- **Controller ID number.** Unique number assigned to every 3ware controller in a system, starting with zero.
- **Create an array.** The process of selecting individual disk drives and selecting a RAID level. The array will appear to the operating system as a single unit. Overwrites any existing unit configuration data on the drives. Note that in 3ware software tools, arrays are referred to as units.
- **DCB.** Disk configuration block. This is 3ware proprietary RAID table information that is written to disk drives that are in a RAID unit or single disk. The DCB includes information on the unit type, unit members, RAID level, and other important RAID information.
- **Delete an array.** Deleting an array (or unit) is the process of returning the drives in a unit to individual drives. This erases the DCB information from the drives and deletes any data that was on them. When a unit is deleted from a controller, it is sometimes referred to as being “destroyed.” If you want to remove a unit without deleting the data on it, do not delete it; instead use the Remove feature in 3DM 2, and then physically remove the drives.
- **Destroying.** Same as deleting a unit.
- **Degraded unit.** A redundant unit that contains a drive that has failed.
- **Disk roaming.** When moving a unit from one controller to another, refers to putting disks back in a different order than they initially occupied, without harm to the data.
- **Distributed parity.** Parity (error correction code) data is distributed across several drives in RAID 5, RAID 6, and RAID 50 configurations. Distributing parity data across drives provides both protection of data and good performance.
• **Drive ID.** A unique identifier for a specific drive in a system. Also called a port ID.

• **Drive Number.** The SCSI number, or channel number, of a particular drive.

• **ECC.** Error correction code. ECC Errors are grown defects that have occurred on a drive since it was last read.

• **ECC Error policy.** Determines whether an error detected during a rebuild stops the rebuild or whether the rebuild can continue in spite of the error. Specified by the *Ignore ECC (Continue on Source Error When Rebuilding)* unit policy.

• **Enclosure.** An enclosure houses drives and a backplane. The backplane may have an expander.

• **Expander.** Expanders are simple switches in enclosures that provide connectivity between the 3ware 9750 RAID controller and the other devices in the SAS domain. Expanders allow one phy to connect to multiple drives.

• **Export a unit.** To remove the association of a unit with a controller. Does not affect the data on the drives. Used for array roaming, when you want to swap out a unit without powering down the system, and move the unit to another controller. Compare to Delete, which erases all unit configuration information from the drive.

• **Exportable unit or drive.** In 3BM (BIOS), exportable units and drives are those that will be available to the operating system when you boot your computer.

• **Fault tolerant.** A RAID unit which provides the ability to recover from a failed drive, either because the data is duplicated (as when drives are mirrored) or because of error checking (as in a RAID 5 unit).

• **Firmware.** Computer programming instructions that are stored in a read-only memory on the controller rather than being implemented through software.

• **Grown defect.** Defects that arise on a disk from daily use.

• **Hot spare.** A drive that is available, online, and designated as a spare. When a drive fails in a redundant unit, causing the unit to become degraded, a hot spare can replace the failed drive automatically and the unit will be rebuilt.

• **Hot swapping.** The process of removing a disk drive from the system while the power is on. Hot swapping can be used to remove units with data on them, when they are installed in hot swap bays. Hot swapping can also be used to remove and replaced failed drives when a hot swap bay is used.
• **Import a unit.** Attach a set of disk drives with an existing configuration to a controller and make the controller aware of the unit. Does not affect the data on the drives.

• **Initialize.** For 3ware SATA RAID controllers, initialize means to put the redundant data on the drives of redundant units into a known state so that data can be recovered in the event of a disk drive failure. For RAID 1 and 10, initialization copies the data from the lower port to the higher port. For RAID 5, 6, and 50, initialization calculates the RAID 5 parity and writes it to disk (background initialization). This is sometimes referred to as *resynching*, and does not erase user data. **Note:** If foreground initialization is done before the operating system has loaded, zeroes are written to all of the drives in the unit. This process, done through the 3ware BIOS, does erase existing data.

• **Logical Units.** This term is used in the 3ware CLI. It is usually shortened to “units.” These are block devices presented to the operating system. A logical unit can be a one-tier, two-tier, or three-tier arrangement. Single logical units are examples of one-tier units. RAID 1, RAID 5, and RAID 6 are examples of two-tier units and as such will have sub-units. RAID 10 and RAID 50 are examples of three-tier units and as such will have sub-sub-units.

• **JBOD.** An unconfigured single drive. The acronym is derived from “just a bunch of disks.” Note that earlier versions of the 3ware RAID controller exported JBODs to the OS. This is no longer supported. Individual drives should be configured as Single Disks in order to be made available to the OS.

• **Migration.** The process of changing the characteristics of a unit. The change can be to expand the capacity of the unit (OCE), change the stripe size of the unit, change the unit from redundant to non-redundant, change the unit from non-redundant to redundant, and to change the unit from one type of redundant unit to another type of redundant unit (for example RAID 1 to RAID 5).

• **Mirrored disk array (unit).** A pair of drives on which the same data is written, so that each provides a backup for the other. If one drive fails, the data is preserved on the paired drive. Mirrored disk units include RAID 1 and RAID 10.

• **NCQ (Native Command Queuing).** See “Queuing”

• **Non-redundant units.** A disk array (unit) without fault tolerance (RAID 0 or single disk.).

• **OCE (Online Capacity Expansion).** The process of increasing the size of an existing RAID unit without having to create a new unit. See also *migration*.

• **Parity.** Information that the controller calculates using an exclusive OR (XOR) algorithm and writes to the disk drives in RAID 5, RAID 6, and
RAID 50 units. This data can be used with the remaining user data to recover the lost data if a disk drive fails.

- **PCB.** Printed circuit board.
- **P-Chip.** PCI interface chip that connects the PCI bus to the high-speed internal bus and routes all data between the two using a packet switched fabric. There is one P-chip per controller card.
- **Phy.** Phys are transceivers that transmit and receive the serial data stream that flows between the controller and the drives. 3ware 9750 controllers have 8 phys. These phys are associated with virtual ports (vports) by 3ware software to establish up to 96 potential connections with the SAS or SATA hard drives.
- **Phy Identifier.** The ID number (0-7) assigned to each of the 8 phys on the 9750 controller.
- **Port.** 3ware controller models prior to the 9690SA series have one or many ports (typically 4, 8, 12, 16, or 24). Each port can be attached to a single disk drive. On a controller with a Multi-lane™ serial port connector, one connector supports four ports (eight if 24-port controller). On 9750 and 9690SA series controllers, connections are made with phys and vports (virtual ports). See “phy” and “VPort”.
- **Port ID.** A unique identifier for a specific port in a system. Also called a drive ID.
- **Queuing.** SATA drives can use Native Command Queuing (NCQ) to improve performance in applications that require a lot of random access to data, such as server-type applications. When NCQ is enabled, the commands are reordered on the drive itself.

NCQ must be supported by the drive. NCQ must be turned on in both the drive and the RAID controller. By default, the RAID unit’s queue policy is disabled when creating a unit.
- **RAID.** Redundant array of inexpensive disks, combined into a unit (array), to increase your storage system’s performance and provide fault tolerance (protection against data loss).
- **Rapid RAID Recovery.** The Rapid Raid Recovery feature increases the speed with which a redundant unit can be made redundant again when a rebuild is required. It can also increase the speed of verification or initialization that may occur in the event of an unclean shutdown.
- **Read Cache.** Read Cache stores data from media locally on the controller to improve read access times for applications. The 3ware Read Cache feature also includes an Intelligent Mode, which enables Intelligent Read Prefetch (IRP). IRP includes a typical read-ahead caching method which is used to proactively retrieve data from media and store it locally on the controller with the anticipation that it may be requested by the host.
• **Rebuild task schedule.** The specification for when rebuilding, may occur, including start time and duration.

• **Rebuild a unit.** To generate data on a new drive after it is put into service to replace a failed drive in a fault tolerant unit (for example, RAID 1, 10, 5, 6, or 50).

• **Redundancy.** Duplication of data on another drive or drives, so that it is protected in the event of a drive failure.

• **Remove a drive.** The process of making a drive unavailable to the controller.

• **Remove a unit.** The process of making a unit unavailable to the controller and the operating system. After a unit is removed it can be hot swapped out of the system. This is sometimes referred to as exporting a unit.

• **RLM (RAID Level Migration).** The process of using an existing unit of one or more drives and converting it to a new RAID type without having to delete the original unit. For example, converting a single disk to a mirrored disk or converting a RAID 0 unit to a RAID 5 unit.

• **Self-test.** A test that can be performed on a scheduled basis. Available self-tests include Check SMART Thresholds.

• **Stagger time.** The delay between drive groups that will spin up, at one time, on a particular controller.

• **SAS.** SAS (Serial Attached SCSI) is a serial communication protocol for storage devices. The SAS protocol includes support for SAS and SATA devices.

• **SAS address.** Each SAS device (SAS drives, controllers, and expanders) has a worldwide unique 64-bit SAS address. Also known as World Wide Number (WWN). SATA drives do not have a WWN and are identified by their VPort ID.

• **SAS device.** SAS devices include SAS drives, controllers, and any expanders present in the SAS domain. Each SAS device has a unique 64-bit World Wide Number (WWN). SATA drives do not have a WWN and are identified by their VPort IDs.

• **SAS domain.** The SAS domain includes all SAS and SATA devices that are connected to the 9750 controller, either directly or through expanders.

• **SES (SCSI Enclosure Services).** The SES protocol allows the 9750 RAID controller to manage and report the state of the power supplies, cooling devices, displays, indicators, individual drives, and other non-SCSI elements installed in an enclosure.

• **Stripe size.** The size of the data written to each disk drive in RAID unit levels that support striping. The size of stripes can be set for a given unit.
during configuration. The stripe size is user-configurable at 64 KB, 128 KB, or 256 KB.

This stripe size is sometimes referred as a “minor” stripe size. A major stripe size is equal to the minor stripe size times the number of disks in the unit.

- **Striping.** The process of breaking up files into smaller sizes and distributing the data amongst two or more drives. Since smaller amounts of data are written to multiple disk drives simultaneously, this results in an increase in performance. Striping occurs in RAID 0, 5, 6, 10 and 50.

- **Subunit.** A logical unit of storage that is part of another unit. For example, the mirrored pairs (RAID 1) in a RAID 10 unit are subunits of the RAID 10 unit.

- **Unit ID.** A unique identifier for a specific unit in a system.

- **Unit Number.** The SCSI number, or channel number, of a particular unit.

- **Unit.** A logical unit of storage, which the operating system treats as a single drive. A unit may consist of a single drive or several drives. Also known as an array.

- **Verify.** A process that confirms the validity of the redundant data in a redundant unit. For a RAID 1 and RAID 10 unit, a verify will compare the data of one mirror with the other. For RAID 5, RAID 6, and RAID 50, a verify will calculate RAID 5 parity and compare it to what is written on the disk drive.

- **VPort.** The 3ware 9750 RAID controller has 96 addresses available to assign to hard drives. These addresses are known as virtual port (vport) IDs. By using vport IDs and expanders, one controller phy can connect to multiple drives. This is in contrast to standard port connections which are one-to-one physical connections.

- **Wide Port.** A SAS port can consist of one or more phys. When a SAS port consists of one phy it is known as a narrow port, when it contains multiple phys it is known as a wide port. The 3ware 9750 controller has two wide port connectors that contain 4 phys each. These phys can function individually, in which case each phy has its own SAS address, or the 4 phys can be banded together, in which case they share the same SAS address. A 9750 wideport can have a bandwidth of up to 12.0 Gbps.

- **WWN (World Wide Number).** The unique worldwide 64-bit SAS address assigned by the manufacturer to each SAS port and expander device in the SAS domain. Many SAS drives have 2 ports and thus 2 WWNs.

- **Write Cache.** When write cache is enabled, data will be stored in controller cache and drive cache before the data is committed to disk. This allows the system to process multiple write commands at the same time, thus improving performance.
Software Installation

This appendix provides detailed instructions for installing and uninstalling the 3ware management software for your 3ware RAID controller.

You can install all software at once, or you can use the installer to install some or all of the following specific components:

• 3DM 2
• CLI (Command Line Interface)

There are two versions of the installer: one for use in a graphical user interface (Windows or Linux), and a console version, for use at a Linux command line.

Installing Software

This section tells you how to install 3ware RAID controller management software. It is organized into these sections:

• Installing Software from a Graphical User Interface (GUI)
• Installing Software on Linux from the Command Line

Installing Software from a Graphical User Interface (GUI)

The steps below describe how to install the 3ware RAID management software from a windowing graphical user interface such as Microsoft Windows or X Windows in Linux.

To install the 3ware management software

1 With your computer on, insert the 3ware CD that came with your 3ware RAID controller.
 The CD should automatically launch and display the LSI License window. If it does not, you can start it manually.
Installing Software

- Under Windows, open **My Computer**, select the CD, right-click and choose **AutoPlay**.
- Under Linux, manually mount the CD by typing

  ```bash
  mount /dev/cdrom /mnt
  ```

 Start autorun by typing:

  ```bash
  /mnt/autorun
  ```

2. When the License screen appears, review and agree to the license in order to continue.

3. When the 3ware menu appears, click **Install Tools** to launch the installer. The installer will start and the welcome screen appears.

4. From the Welcome screen, click **Next** to start the installation process.

Figure 107. Welcome Installation Screen

![Welcome Installation Screen](image-url)
5 On the License Agreement page, accept the agreement and click **Next**.

Figure 108. License Agreement Screen

![License Agreement Screen](image)

6 If you want to change where the 3ware Disk Management tools 3DM and CLI will be installed, you can change the path and directory.

When you are ready, click **Next**.

Figure 109. Specify Directory Path Screen

![Specify Directory Path Screen](image)

7 Select what components you want to install and click **Next**.

3DM and CLI are applications that let you set up and manage RAID units.
Figure 110. Select Components to Install Screen

If you unselect **Enable Web Interface**, the 3DM 2 web interface will not be enabled.

8 On the summary screen, review the installation that is about to occur. If you want to make changes, use **Back** to move back through the screens. When you are ready, click **Install** to continue.

Figure 111. Installation Summary Screen
When the final installation screen lets you know that installation is complete, click Finish.

Figure 112. Final Installation Screen

Installing Software on Linux from the Command Line

The following steps describe how to install software on Linux at a command line, using a console application.

To install software on Linux from the command line

1. Navigate to the folder containing the installer for your operating system and processor type (x86 or x64). It will be one of the following:
 `/packages/linux/x86`
 `/packages/linux/x86_64`

2. Type:
   ```
   ./[name of install file] -console
   ```
 and press Enter.

 The install file name will be one of the following, depending on your operating system and processor type.
   ```
   ./setupLinux_x86.bin -console
   ./setupLinux_x64.bin -console
   ```

3. After you press Enter, the application starts in text mode.

4. Respond to each screen as it walks you through the installation process.
The Console installation screens mirror those that display using the GUI installer. For specific information about the screens, see the previous section in this chapter.

To navigate in text mode, type:

1 for Next
2 for Previous
3 to Cancel
5 to Redisplay
0 to Continue Installing
Uninstalling 3ware Software

This section tells you how to uninstall 3ware RAID controller management software for these operating systems.

- Uninstalling 3ware Software under Microsoft Windows
- Uninstalling 3ware Software under Linux

Note: If 3DM is reinstalled or restarted, close any open web browsers before starting 3DM again to close the server socket.

Uninstalling 3ware Software under Microsoft Windows

Use the Add or Remove Programs control panel to uninstall 3DM.

- From the Startup menu, choose Control Panels > Add or Remove Programs.
- In the Add or Remove Programs control panel, select 3ware Disk Management Tools and click Change/Remove.

Uninstalling 3ware Software under Linux

The following steps describe how to uninstall software on Linux from the command line. If you do not use the -console option, the installer will assume you want GUI mode. You must be root or superuser.

To uninstall 3DM for Linux

1. Navigate to the directory where you installed the software. The default directory is /opt/3ware.
2. Change to the subdirectory “_uninst”.
3. For Linux, type:

 ./uninstaller.bin -console and press Enter.
4. Follow the prompts to remove the installed components.
Compliance and Conformity Statements

This section is organized into the following topics:

- FCC Radio Frequency Interference Statement
- Canadian Compliance Statement
- European Community Conformity Statement

FCC Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC (Federal Communications Commission) Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

To maintain compliance with FCC radio frequency emission limits, use shielded cables and connectors between all parts of the computer system. Changes or modification to the product may void the user’s authority to operate this equipment.
Canadian Compliance Statement

This Class B digital apparatus complies with Canadian ICES-003.
Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

European Community Conformity Statement

The Controller Models 9750-4I and 9750-8I are in conformity with the following Common Technical Regulations and/or normative documents:

- **EN 55022** Limits and methods of measurements of radio interference characteristics of information technology equipment
- **EN 61000-4-2** Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 2: Electrostatic discharge immunity test
- **EN 61000-4-3** Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 3: Radiated, Radio-Frequency, Electromagnetic Field Immunity Test
- **EN 61000-4-4** Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 4: Electrical fast transient/burst immunity test
- **EN 60950** Safety of information technology equipment, including electrical business equipment following the provisions of the Electromagnetic Compatibility Directive 89/23/EEC Low Voltage Directive

![CE Mark](image)
Warranty, Technical Support, and Service

This section is organized into the following topics:

- Limited Warranty
- Warranty Service and RMA Process
- LSI Technical Support and Services
- Sales and ordering information
- Feedback on this manual

Limited Warranty

RAID Controller Hardware. LSI warrants the 9750 product against defects in material and workmanship for a period of thirty-six (36) months from the date of original purchase. LSI, at no charge and at its option, will repair or replace any part of this product which proves defective by reason of improper workmanship or materials. Repair parts or replacement products will be provided by LSI on an exchange basis and will be either new or refurbished to be functionally equivalent to new. Products or parts replaced under this provision shall become the property of LSI.

Optional Battery Backup Unit (BBU) Hardware. 1-Year Hardware Warranty: LSI warrants this product against defects in material and workmanship for a period of twelve (12) months from the date of original purchase. LSI, at no charge and at its option, will repair or replace any part of this product which proves defective by reason of improper workmanship or materials. Repair parts or replacement products will be provided by LSI on an exchange basis and will be either new or refurbished to be functionally equivalent to new. Products or parts replaced under this provision shall become the property of LSI.

LSI warranty service is provided by returning the defective product to LSI.
Exclusions

This warranty does not cover any damage to this product which results from accident, abuse, misuse, natural or personal disaster, or any unauthorized disassembly, repair or modification. LSI shall not be liable for any incidental or consequential damages, including but not limited to loss of profits, other loss, damage or expense directly or indirectly arising from the customer's misuse of or inability to use the product, either separately or in combination with other equipment, regardless of whether LSI has been advised of the possibility of such damages. LSI is not liable for and does not cover under warranty, any costs associated with servicing and/or the installation of LSI products. This warranty sets for the entire liability and obligations of LSI with respect to breach of warranty and the warranties set forth or limited herein are the sole warranties and are in lieu of all other warranties, expressed or implied, including warranties or fitness for particular purpose and merchantability.

State Law Provisions

This warranty gives you specific legal rights and you may have other rights which vary from state to state. Some states do not allow the exclusion of incidental or consequential damages or allow limitation of implied warranties or their duration, so that the above exclusions or limitations may not apply.

Warranty Service and RMA Process

To obtain warranty service during the warranty period, contact Technical Support at http://www.lsi.com/channel/ContactUs and request a return authorization number.

You will be issued a return material authorization (RMA) number and other instructions for returning the controller. You can also explore options for expedited handling, status for "in process" RMAs and other policy information related to returns in general.

Please use the original packing material contents of the box when exchanging or returning a product.

For information about the status of a replacement, please contact LSI Technical Support.
LSI Technical Support and Services

Product information, Frequently Asked Questions, software upgrades, driver files and other support are available through the LSI World Wide Web site at http://www.lsi.com/channel/ChannelDownloads/. LSI’s 3ware software library is accessible at: http://www.lsi.com/channel/ChannelDownloads/

Web-based software downloads feature upgrading multiple switches simultaneously.

For specific answers to questions or to give feedback about the product, visit our website at http://www.lsi.com/channel/ContactUs. LSI also offers 24 hour/7 days a week phone support at 1 (800) 633-4545 in North America, or at 00 800 47 45 64 42 internationally. The international phone number does not require country-specific access codes.

Sales and ordering information

For sales inquiries, visit http://www.lsi.com/channel/ContactUs

Feedback on this manual

Your feedback is welcome. If anything in the guide seems unclear please let us know. Please send an email to support1@lsi.com.
Index

Numerics
2TB support 83
3BM
 help 60
 main screen 54
 navigation 55
 screens 54
 starting 51
 working in 55
3DM
 3DM menus 66
 Alarms page 228
 Battery Backup Information page 229
 browser requirements 62
 Controller Details page 202
 Controller Settings page 211
 Controller Summary page 201
 Disk Management Utility Overview 61
 Drive Details page 208
 Drive Information page 206
 enabling remote access 73
 Enclosure Details page (3DM) 232
 Enclosure Summary page (3DM) 231
 installation 310
 main 3DM screen 66
 Maintenance page 219
 managing email event notification 72
 page refresh frequency 75
 passwords 71
 preferences 71
 problems 245
 remote access, enabling 73
 Scheduling page 216
 setting listening port number 74
 Settings page 235
 starting 62
 starting in Linux 64
 uninstalling 3DM on
 Linux 316
 Windows 316
 Unit Details page 204
 Unit Information page 203
 3ware HTML Bookshelf xi

A
 A-Chip

 definition 303
 active content in the 3ware HTML Bookshelf,
 security message about xii
 Advanced Content Streaming 2
 AEN
 All RAID keys failed validation (0080) 288
 Backup DCB read error detected (0043) 277
 Battery capacity is below error level (0059) 284
 Battery capacity is below warning level (0058) 284
 Battery capacity test completed (0050) 282
 Battery capacity test is overdue (0053) 283
 Battery capacity test started (004E) 281
 Battery charging completed (0056) 283
 Battery charging fault (0057) 284
 Battery charging started (0055) 283
 Battery is not present (005B) 285
 Battery is present (005A) 285
 Battery is weak (005C) 285
 Battery temperature is high (004B) 280
 Battery temperature is low (004A) 280
 Battery temperature is normal (0049) 279
 Battery temperature is too high (004D) 281
 Battery temperature is too low (004C) 281
 Battery voltage is high (0046) 278
 Battery voltage is low (0045) 278
 Battery voltage is normal (0044) 277
 Battery voltage is too high (0048) 279
 Battery voltage is too low (0047) 278
 Buffer ECC error corrected (0039) 272
 Buffer integrity test failed (0024) 262
 Cache flush failed, some data lost (0025) 262
 Cache synchronization completed (005E) 286
 Cache synchronization failed 286
 Cache synchronization skipped (004F) 282
 Controller error occurred (0003) 252
 Controller reset occurred (1001) 251
 DCB checksum error detected(0027) 264
 DCB version unsupported (0028) 264
 Degraded unit (0002) 251
 Downgrade UDMA (0021) 260
 Drive ECC error reported (0026) 263
 Drive error detected (000A) 255
 Drive inserted (001A) 259
 Drive not supported (0030) 269
 Drive power on reset detected (003A) 273
 Drive removed (0019) 258
 Drive timeout detected (0009) 255
 Drive write fault 288
 Enclosure added (0063) 287
Enclosure audio alarm activated but mute (8047) 300
Enclosure audio alarm added (804A) 301
Enclosure audio alarm failed (8048) 300
Enclosure audio alarm removed (8049) 300
Enclosure audio alarm status unknown (804B) 301
Enclosure current normal (8044) 299
Enclosure current over (8045) 299
Enclosure current unknown (8046) 299
Enclosure fan added (8003) 290
Enclosure fan error (8001) 289
Enclosure fan normal (8000) 289
Enclosure fan off (8005) 291
Enclosure fan removed (8002) 290
Enclosure fan unknown (8004) 290
Enclosure power added (8033) 296
Enclosure power fail (8031) 295
Enclosure power normal (8030) 295
Enclosure power off (8037) 297
Enclosure power removed (8032) 296
Enclosure power unknown (8034) 296
Enclosure removed (0062) 286
Enclosure temp above operating (8024) 293
Enclosure temp added (8026) 294
Enclosure temp below operating (8023) 292
Enclosure temp critical (8027) 294
Enclosure temp high (8022) 292
Enclosure temp low (8021) 291
Enclosure temp normal (8020) 291
Enclosure temp removed (8025) 293
Enclosure temp unknown (8028) 294
Enclosure voltage normal (8040) 297
Enclosure voltage over (8041) 298
Enclosure voltage under (8042) 298
Enclosure voltage unknown (8043) 298
Flash file system error detected (003F) 275
Flash file system repaired (0040) 276
Incomplete unit detected (0006) 253
Initialize completed (0007) 254
Initialize failed (000E) 257
Initialize paused (003C) 274
Initialize started (000C) 257
Local link down (0065) 287
Local link up (0064) 287
Migration completed (0035) 271
Migration failed (0034) 270
Migration paused (003E) 275
Migration started (0033) 270
Primary DCB read error occurred (0042) 276
RAID key not found (0081) 289
Rebuild completed (0005) 253
Rebuild failed (0004) 252
Rebuild paused (003B) 273
Rebuild started (000B) 256
Replacement drive capacity too small (002E) 268
Reverted to emergency recovery firmware (0066) 287
Sector repair completed (0023) 261
SO-DIMM not compatible (0037) 271
SO-DIMM not detected (0038) 272
Source drive ECC error overwritten(002C) 267
Source drive error occurred(002D) 267
Spare capacity too small for some units (0032) 269
Unclean shutdown detected (0008) 254
Unit inoperable (001E) 259
Unit number assignments lost (0041) 276
Unit Operational (001F) 260
Upgrade UDMA mode (0022) 261
Verify completed(002B) 266
Verify failed (002A) 265
Verify fixed data/parity mismatch (0036) 271
Verify not started, unit never initialized (002F) 268
Verify paused (003D) 274
Verify started (0029) 265
AEN messages 147, 228, 246
alarms 147
alert utility (WinA V Alarm) 148
viewing 147
Alarms page, 3DM 228
alert utility (WinA V Alarm) 148
All RAID keys failed validation (0080) 288
arrays 5
array roaming 5, 131, 133
definition 303
definition 303
moving from one controller to another 133
removing in 3DM 131
asterisk next to unit 204, 205
Auto Rebuild policy 17, 79
setting 82, 214
Auto Verify policy for units 213
setting (3DM) 115
auto-carving 83
auto-carving policy 79
auto-carving policy
setting 214
available drives, 3DM 225

B
background initialization after power failure 155
background tasks
background rebuild rate (definition) 303
background task mode 165, 212
background task mode, setting 168
background task rate 212
background task rate, setting 168
definition 16
initialization 152
overview 151
prioritizing 169
rebuilding a unit 160
relationship of task mode and task rate 166
scheduling 169
verification 155
Backup DCB read error detected (0043) 277
Basic read cache mode 111
Battery capacity is below error level (0059) 284
Battery capacity is below warning level (0058) 284
Battery capacity test completed (0050) 282
Battery capacity test is overdue (0053) 283
Battery capacity test started (004E) 281
Battery charging completed (0056) 283
Battery charging fault (0057) 284
Battery charging started (0055) 283
Battery is not present (005B) 285
Battery is present (005A) 285
Battery is weak (005C) 285
Battery temperature is high (004B) 280
Battery temperature is low (004A) 280
Battery temperature is normal (0049) 279
Battery temperature is too high (004D) 281
Battery temperature is too low (004C) 281
Battery voltage is high (0046) 278
Battery voltage is low (0045) 278
Battery voltage is normal (0044) 277
Battery voltage is too high (0048) 279
Battery voltage is too low (0047) 278
BBU
 Battery Backup Information page 229
 testing battery capacity 187
 viewing battery information 186
BIOS
 showing version 202
 BIOS Manager, using 51
blinking LEDs
 to locate drives 145
 to locate enclosure components 195
blinking LEDs (drive locate) 204, 207, 234
Boot volume size
 definition 303
boot volume size, specifying 93
bootable unit, specifying 54
browser requirements, 3DM 62
Buffer ECC error corrected (0039) 272
Buffer integrity test failed (0024) 262

C
Cache flush failed, some data lost (0025) 262
Cache synchronization completed (005E) 286
Cache synchronization failed 286
Cache synchronization skipped (004F) 282
cancel rebuild 165
carve size 80
 setting 86, 215
certificate message when starting 3DM 63
CLI
 definition 304
 installation 310
Command Logging
 enabling or disabling 237
Compliance and Conformity 317
configuration
 changing 123
 controller 77
 definition 304
 exit and save modifications 53
 exit without saving 53
 unit 91
configuring
 a controller 77
 units 91
configuring units
 first time, in BIOS 18
Continue on Source Error During Rebuild
 setting as a unit policy 116
controller
 controller ID number (definition) 304
 controller information, viewing 77
 controller policies
 overview 79
 viewing 81
definition 304
 moving unit to another 133
 rescanning 138
 status 201
 updating driver
 Red Hat 183
 SuSE 185
 Windows 181
 updating firmware 179
Controller Board Selection screen (3BM) 20
Controller Details page, 3DM 202
controller details, 3BM 78
Controller error occurred (0003) 252
Controller Information screen (3BM) 79
Controller Phy Information page (3BM) 88
Controller Phy Policies page 90
Controller Phy Policies page (3BM) 90
Controller Phy Summary page (3DM) 89, 210
Controller reset occurred (0001) 251
Controller Settings page, 3DM 211
Controller Summary page, 3DM 201
conventions
 in the user guide x
creating a unit
 3BM 97
 basic steps 18
 configuration options 92
definition 304
 first time, in BIOS 18
in 3DM 95
introduction 91
current controller (definition) 68
customer support
contacting 239, 321

D
DCB checksum error detected (0027) 264
DCB version unsupported (0028) 264
DCB, definition 304
default settings
policies and background tasks 30
Degraded (unit status) 144
degraded unit
about 144
definition 304
Degraded unit (0002) 251
delay between spin-up policy (viewing in 3DM) 215
deleting a unit 129
3DM 224
definition 304
deleting a unit in 3BM 130
destroy unit (definition) 304
diagnostic log
downloading 199
for enclosures 199
disk arrays 54
Disk Manager, using 61
distributed parity 5
Downgrade UDMA mode (0021) 260
downloading
driver and firmware 178
drive
adding in 3DM 135
capacity considerations 12
checking status in 3DM 139
coercion 12
drive ID (definition) 305
drive number (definition) 305
locate by blinking 145
removing in 3DM 136
status, viewing (3DM) 139
statuses 144
types 3
viewing SMART data 150
Drive Details page, 3DM 208
Drive Error page, 3DM 208
Drive ECC error reported (0026) 263
Drive error detected (000A) 255
Drive Information page (3BM) 142
Drive Information page (3DM) 141
Drive Information page, 3DM 206
Drive inserted (001A) 259
drive locate 204, 207, 234
Drive not supported (0030) 269
drive performance monitoring
definition 15
using 241
Drive power on reset detected (003A) 273
Drive removed (0019) 258
drive requirements 3
Drive timeout detected (0009) 255
Drive write fault 288
driver
compiling for Linux 50
current version, determining 176
downloading 178
installation overview 32
installation under Linux 39
installation under Windows 33
installation utility for Windows 36, 181
updating
Red Hat 183
SuSE 185
Windows 181
driver diskette
creating (Linux) 41
creating (Windows) 34
drives
viewing a list of 141
drives per spin-up policy 215
dynamic sector repair 157, 261

E
ECC
definition 305
ECC error policy (definition) 305
e-mail event notification, managing in 3DM 72, 236
Enclosure added (0063) 287
Enclosure audio alarm activated but mute (8047) 300
Enclosure audio alarm added (804A) 301
Enclosure audio alarm failed (8048) 300
Enclosure audio alarm removed (8049) 300
Enclosure audio alarm status unknown (804B) 301
Enclosure current normal (8044) 299
Enclosure current over (8045) 299
Enclosure current unknown (8046) 299
Enclosure Details page (3DM) 232
Enclosure fan added (8003) 290
Enclosure fan error (8001) 289
Enclosure fan normal (8000) 289
Enclosure fan off (8005) 291
Enclosure fan removed (8002) 290
Enclosure fan unknown (8004) 290
Enclosure Information page (3BM) 192
Enclosure power added (8033) 296
Enclosure power fail (8031) 295
Enclosure power normal (8030) 295
Enclosure power off (8037) 297
Enclosure power removed (8032) 296
Enclosure power unknown (8034) 296
Enclosure removed (0062) 286
enclosure status indicators 142
Enclosure Summary page (3DM) 231
Enclosure temp above operating (8024) 293
Enclosure temp added (8026) 294
Enclosure temp below operating (8023) 292
Enclosure temp critical (8027) 294
Enclosure temp high (8022) 292
Enclosure temp low (8021) 291
Enclosure temp normal (8020) 291
Enclosure temp removed (8025) 293
Enclosure temp unknown (8028) 294
Enclosure voltage normal (8040) 297
Enclosure voltage over (8041) 298
Enclosure voltage under (8042) 298
Enclosure voltage unknown (8043) 298
enclosures
 blinking LEDs for components 195
 blinking LEDs for drives 145
 checking status of components (fans, temperature
 sensors, power supplies 192
detail information 232
downloading a diagnostic log 199
enclosure (definition) 305
elevation management features 190
elevation requirements 3
Enclosure Services, defined 16
LED status indicators 142
locating a component (fan, temperature sensor,
 power supply) 195
summary information 231
viewing a list of 191
errors 147
 error correction 16
 error log, downloading 150
 error messages 246
 how handled by verification process 157
 viewing 150
European Community Conformity statement 318
events (see also errors and alarms) 147
expander (definition) 305
export a unit
 definition 305
export unconfigured disks (policy) 80
F
fan
 checking status 192
 possible statuses 194
 summary 233
fault tolerant
 definition 305
FCC Radio Frequency Interference Statement 317
firmware
 definition 305
downloading 178
 showing version 201, 202
 updating 179
Flash file system error detected (003F) 275
Flash file system repaired (0040) 276
FUA (Force Unit Access) commands, part of
 StorSave profile 119
G
grown defect, definition 305
H
hardware installation, troubleshooting 243
help, getting for 3BM 60
hot spare 10
 creating 104, 105
 hot spare (definition) 305
 specifying 26
hot swap 5
 hot swap (definition) 305
HTTP port number for 3DM 237
I
identify
 drive by blinking LED 204, 207
 enclosure components by blinking 195
 identify checkbox in 3DM 204, 207
 slot by blinking LED 234
import a unit
 definition 306
incomplete drives 128
incomplete drives, deleting through 3BM 130
Incomplete unit detected (0006) 253
initialization
 about 152
 background initialization after power failure 155
 background versus foreground 152
 definition 306
 RAID 0 units 153
 RAID 1 units 154
 RAID 10 units 154
 RAID 5 units 153
 RAID 50 units 153
 selecting method (foreground or background) to use
 for new unit (3BM) 93
Initialze completed (0007) 254
Initialize failed (000E) 257
Initialize paused (003C) 274
Initialize started (000C) 257
Initializing (unit status) 143
Inoperable (unit status) 144
inoperable units (about) 145
installation
 disk management tools (3DM2 and CLI)
installation 310
driver utility for Windows 36, 181
of controller 28
overview 18
troubleshooting
 hardware 243
 software 244
installing
 formatting 38
 making units available 38
 partitioning 38
Intelligent Mode (read cache) 111
Intelligent Read Prefetch (IRP), a read cache mode
 setting 111

J
JBOD 10
JBOD policy 80

L
latency, and how to minimize 165
LEDs
 colors and behavior 142
 indicators 142
Link Control (Phy) 210
link speed
 changing for a phy 89
Linux driver
 compiling 50
 installation 39
 updating 183, 185
listening port for 3DM 237
listening port number, 3DM 74
Load Control 57
Local link down (0065) 287
Local link up (0064) 287
locating
 drives 145
 enclosure components 195
logging in to 3DM 63
logical unit
 definition 306

M
main screen, 3BM 54
main screen, 3DM 66
maintaining units 139
Maintenance page, 3DM 219
media scans 16
 (verification of non-redundant units) 156
menus, 3DM 66
messages, error 246
Migrate-Paused (unit status) 144
Migrating (unit status) 143
migrating a unit 123, 223
definition 306
Migration completed (0035) 271
Migration failed (0034) 270
Migration paused (003E) 275
Migration started (0033) 270
mirrored disk array
 definition 5, 306
 RAID 1 6
motherboard boot sequence 27
motherboard requirements 2
Multi LUN support (auto-carving) 79, 83
multiple volumes in one unit 83

N
name of unit 93, 203
 assigning 106, 214
 navigation, 3BM 55
NCQ (native command queuing)
 definition 306
 NCQ policy 213
non-redundant units
 definition 306

O
Online Capacity Expansion (OCE), definition 306
operating systems
 informing of changed configuration 127
operating systems supported 3
Other Controller Settings, 3DM 214

P
page refresh
 3DM 237
 frequency, 3DM 75
parity
 definition 306
 distributed 5
partitioning and formatting units 102
passwords, 3DM 71, 236
PCB (definition) 307
P-Chip (definition) 307
phy
 changing the link speed 89
 Controller Phy Information page (3BM) 88
 Controller Phy Policies page (3BM) 90
 Controller Phy Summary page (3DM) 87, 89, 210
 link speed, changing 89
 phy (definition) 307
 phy identifier (definition) 307
 seeing a list of 87
 viewing information about 87
policies
 controller 79
 initial settings 30
 unit 107
units 212
port
 definition 307
port ID (definition) 307
power supply
 checking status 192
 possible statuses 194
preferences, 3DM 71
Primary DCB read error occurred (0042) 276
Q
queuing
 enabling and disabling for a unit 117
 Queuing policy (setting in 3DM) 213
 queuing (definition) 307
R
RAID
 concepts and levels 5
 configurations 6
 determining level to use 11
 RAID 0 6
 RAID 1 6
 RAID 10 8
 RAID 5 7
 RAID 50 9
 RAID 6 8
 RAID key not found (0081) 289
 RAID Level Migration (RLM)
 changing level 125
 definition 308
 overview 123
 Rapid RAID Recovery 121
 enabling or disabling 122
 enabling or disabling (3BM) 122
 enabling or disabling (3DM) 122
 read cache policy 212
 Basic Mode versus Intelligent Mode 111
 changing 113
 setting in 3DM 111
 Rebuild completed (0005) 253
 Rebuild failed (0004) 252
 Rebuild paused (003B) 273
 Rebuild started (000B) 256
 rebuild task schedule
 adding a time slot (3DM) 173
 removing a time slot (3DM) 173
 viewing (3DM) 171
 rebuild task schedule (definition) 308
 Rebuilding (unit status) 143
 rebuilding a unit
 3BM 162
 3DM 161, 222
 about 160
 cancelling and restarting 165
 definition 308
 introduction 160
 Rebuild-Paused (unit status) 143, 222
 redundancy
 definition 308
 redundant units, about 156
 remote access
 3DM 237
 enabling in 3DM 73
 remote viewing of controllers through 3DM 65
 removing a drive 136
 3DM 221
 definition 308
 removing a unit 223
 definition 308
 Replacement drive capacity too small (002E) 268
 rescan controller 138, 219
 Reverted to emergency recovery firmware (0066) 287
 roaming, array 131, 133
S
S.M.A.R.T data 208
SAS
 definition 308
 SAS address (definition) 308
 SAS device (definition) 308
 SAS domain (definition) 308
 SAS Address 210
 scheduled background tasks 16
 scheduling
 background tasks 169
 prioritizing background tasks 169
 selecting basic or advanced verify schedule
 (3DM) 172
 task duration 170
 Scheduling page, 3DM 216
 Sector repair completed (0023) 261
 security certificate when starting 3DM 63
 security message related to active content in the
 3ware HTML Bookshelf xii
 self-tests
 about 174, 218
 definition 308
 schedule, adding (3DM) 173
 schedule, removing (3DM) 173
 selecting 174
 self-tests schedule
 viewing (3DM) 171
 serial number
 showing 201, 202
 SES (definition) 308
 Settings page, 3DM 235
 single disk 10
 slot requirements 2
 slot summary (on enclosure) 195
SMART 147
 data, viewing 150
 monitoring 15
SO-DIMM not compatible (0037) 271
SO-DIMM not detected (0038) 272
software installation 310
software installation, troubleshooting 244
some data lost (005F) 286
some data lost (0070) 288
Source drive ECC error overwritten (002C) 267
Source drive error occurred (002D) 267
Spare capacity is too small for some units (0032) 269
spin-up policy
 delay between spin-ups (viewing in 3DM) 215
 number of drives 215
stagger time (definition) 308
staggered method 80
staggered spin-up 15, 80, 86
starting 3BM 51
starting 3DM 62
 under Linux 64
status
controller, viewing (3DM) 201
 definitions
 controller 201
 drive 144
 unit 143
drive, viewing (3DM) 139
status LEDs 142
unit, viewing (3DM) 139
StorSave profile 16
 setting 118, 213
stripe size
 changing 123
 definition 308
striping 5
 definition 309
subunit
 definition 309
system requirements 2
 drive requirements 3
 enclosure requirements 3
 motherboard and slot 2
 operating systems 3
 other requirements 4
T
 task schedules
 about, 3DM 217
 adding a time slot 173
 rebuild/migrate 173
 removing a time slot 173
 self-test 173
 task duration 170
 turning on and off 171
verify 173
 viewing 171
technical support 319
 contacting 239, 321
temperature sensor
 checking status 192
 possible statuses 194
troubleshooting 238
 3DM 245
 hardware installation 243
 software installation 244
TwinStor 8
U
 ultra DMA protocol 260
Unclean shutdown detected (0008) 254
unconfigured drives
 making visible to operating system 27
uninstalling 3DM on
 Linux 316
 Windows 316
unit
 checking status in 3DM 139
 configuring 91
 creating a unit
 in 3DM 95
 introduction 91
 creating a unit for the first time, in BIOS 18
 creating in 3BM 97
 definition 5, 309
 deleting a unit 128
 in 3BM 130
 in 3DM 129
 expanding capacity 126
 maintaining 139
 moving from one controller to another 133
 name 203, 214
 naming 93, 106
 ordering in 3BM 101
 partitioning and formatting 102
 policies, setting 107, 212
 read cache policy, 3DM 212
 read cache policy, working with 111
 rebuilding a unit 160
 in 3BM 162
 in 3DM 161
 removing in 3DM 131, 132
 statuses 143
 Unit Maintenance in 3DM 220
 unit number (definition) 309
 unit statuses 143
 verifying a unit 158
 in 3BM 159
 in 3DM 159
volumes 205
write cache, 3DM 212
write cache, enabling and disabling 109
Unit Details page, 3DM 204
unit ID
definition 309
Unit Information page, 3DM 203
Unit inoperable (001E) 259
Unit number assignments lost (0041) 276
Unit Operational (001F) 260
unit policies
enabling and disabling queuing for a unit 117
enabling and disabling write cache 109
overview 107
setting Auto Verify 115
setting Continue on Source Error During
 Rebuild 116
setting read cache 111
setting the StorSave policy 118
Unsupported DCB, indication on drive 128, 130
updating firmware 179
Upgrade UDMA mode (0022) 261

V
verification 16
about 155
error handling 157
media scans 156
non-redundant units 156
redundant units 156
Verify completed(002B) 266
Verify failed (002A) 265
Verify fixed data/parity mismatch (0036) 271
Verify not started, unit never initialized (002F) 268
Verify paused (003D) 274
verify schedule
 adding a time slot (3DM) 173
 removing a time slot (3DM) 173
 selecting basic or advanced (3DM) 172
 viewing (3DM) 171
Verify started (0029) 265
verifying
 definition 309
 Verifying (unit status) 143
 verifying a unit 158, 159, 222
 Auto Verify policy 115
 manually 158
 stopping (3DM) 159
 Verify-Paused (unit status) 143, 222
 viewing 3DM remotely 65
volume
 specifying a boot volume size 93
volumes
 in a unit 205
 multiple from one unit 83
resulting from auto-carvings 205
vport (definition) 309

W
Warranty 319
wide port (definition) 309
WinAVAlarm 148
Windows alert utility (WinAVAlarm) 148
working in 3BM 55
write cache 16, 212
 disable on degrade, part of Storsave profile 120
 enabling in 3BM 110
 enabling in 3DM 109
write journaling, part of StorSave profile 119
WWN (World Wide Number) (definition) 309