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HPC Emails

• Always cc: <hpc-support@uci.edu>
• Joseph Farran <jfarran@uci.edu>
• Harry Mangalam <hmangala@uci.edu>
• Garr Updegraff <garru@uci.edu>
• Adam Brenner <aebrenne@uci.edu>
• Edward Xia <xias@uci.edu> 
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Course Survey

http://goo.gl/yPS6WK 



Intentions

• Not a HOWTO on specific BigData techniques 
• Introduction of how to think about large-scale 

computing.
• What I wish someone had told me when I was 

starting out with Unix/Linux.
• I am not a CS guy so a few of my 

explanations may be formally wrong.
• But mostly I'm right, or right enough.
• Remember...



Good Judgement comes from Experience

Experience comes from Bad Judgement



I assume...

• You are now familiar with Linux and at least a 
little familiar with cluster computing.

• You're bright: can Google, and read further by 
yourself.

• If I speak too fast; let me know
• Questions, ASK THEM, but I may not answer 

them immediately. – “You don’t know what you 
don’t know”



Some of you...

– Writing your own apps 
– Starting with interpreted languages
– Maybe moving to compiled languages
– Trying to parallelize your work (trivial or 
sophisticated approaches).

This involves BEING a programmer.



All of you..

– Cleansing your data (bash, utilities)
– Writing qsub scripts → SGE
– Running pre-written apps with your data
– Pushing large amounts of data thru HPC
– Developing your own workflows to do this

All these tasks require THINKING like a  
programmer.



Computing Philosophy

Unlike your Science...
 Be lazy.
 Copy others.
 Don't invent anything you don't have to.
 Re-USE, re-CYCLE, DON'T re-invent.
 Do the easy stuff first.
 Don't be afraid to ask others.
 Try it, but try it small at first.

•  Resort to new code only when absolutely necessary.
• Optimize only as a last resort.



Linux & the HPC Cluster

• Linux
• Bash shell & variables
• Commands
• Pipes
• The HPC cluster
• Distributed file systems

Introduction to Linux on the HPC Cluster

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html


Getting Help

• Fix IT Yourself with Google <goo.gl/05MnTi>
 Listservs, forums, IRCs are VERY useful for 

more involved questions
 The HPC Doc list: <http://hpc.oit.uci.edu/> 
 HPC HOWTO <http://goo.gl/kzlqI>
 Us – Adam, Harry, Garr, Joseph.
 BUT!!  Please ask questions intelligently.

http://hpc.oit.uci.edu/
http://goo.gl/kzlqI


How to Ask Questions

 Reverse the situation: if you were answering the 
question, what information would you need?

 Not Science, but it is Logic.
 Include enough info to recreate the problem.
 Exclude what's not helpful or ginormous (use 

<pastie.org> or <tny.cz>) 
 Use text, not screenshots if possible.



Bad Question

Why doesn’t “X” work?



Good Question

I tried running the new podunk/2.8.3 module this morning and it 
looks like I can't get it to launch on the Free64 queue. My output 
files aren't helping me figure out what is wrong.

I am working out of /bio/joeuser/RNA_Seq_Data/
and the qsub script is 'job12.sh'.  The output should be in

●  /bio/joeuser/RNA_Seq_Data/output

When I submit the job, it appears to go thru the scheduler but 
then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the Error 
messages suggest that there's a problem finding libgorp.so.3



HELP US HELP YOU

We need this information:

- the directory in which you’re working (pwd),
- the machine you’re working on (hostname)
- modules loaded (module list)
- computer / OS you’re connecting from 
- the command you used and the error it 

caused (in /text/, not screenshot)
- much of this info is shown by your prompt

http://goo.gl/6eZORd


On to HPC

What is the High Performance Computing Cluster?

and…

Why do I need HPC?



What is a Cluster?

 bunch of big general purpose computers
 running the Linux Operating System
 linked by some form of networking
 have access to networked storage 
 that can work in concert to address large 

problems
 by scheduling jobs very efficiently



HPC @ UCI in Detail

 ~5500 64b Cores – Mostly AMD, few Intel
 4+ Nvidia Tesla GPUs (2880 cores each)
 ~14TB aggregate RAM
 ~1PB of storage (1000x slower than RAM)
 Control network = 1Gb ethernet (100MB/s)
 Data network = QDR IB (5GB/s) 
 Grid Engine Scheduler to handle Queues
 > 650 users, 100+ are online at anytime



Overview



A hard disk



Storage Server



Client

Metadata server

Storage Servers

??

A:7265
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Applications on HPC

 We use the 'module system' to set up environments 
for specific applications, libraries, and compilers.

 module purge
 module avail prefix
 module list
 module whatis name
 module load name/version
 Rec NOT preloading a lot of modules.



What HPC is NOT

 NOT  your personal machine

 What you do on your machine affects YOU

 What you do on HPC affects the 1000s of other 
jobs running

 Think before you hit Enter.



What HPC is also NOT

NOT BACKED UP 

WHAT. SO. EVER.



DATA IS NOT BACKED UP

 Agitate to your PIs to get us more $ if you 
want this.

 Most data is stored on RAID6
 BUT! Any of that can disappear at any 

moment
 IF ITS VALUABLE, back it up elsewhere --- 

or the code that generated it.



HPC FileSystem Layout

Orange – Cluster Wide

Black    – Node Specific

/

├── data/ NFS Mount

         |─apps All Programs are installed here

         |─users Users home directory – 50GB LIMIT PER USER

├── w1/ Public NFS Server  →  Going away  – 14TB Space

├── w2/ Public NFS Server  →  Going away – 40TB Space
●  |----- pub/              Replacement for /w1, /w2

├── bio/ Space for BIO group   → /dfs1
● ├── som/ Space for SOM group → /dfs1

├── cbcl/ Space for CBCL group → /dfs1

├── dfs1/ Fraunhofer FileSystem – new, Distributed File System ~380TB Space

├── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB of Space

├── fast-scratch  High Speed Fraunhofer FileSystem for temporary storage                   - 13TB
●  |----- ssd-scratch  Very High IOPS for DB, other jobs.
● ├── /tmp Same as scratch



Disk Space / Quotes / Policies

 You can only have so much space
 50GB for /data/ ($HOME directory)
 1yr or older without use – please 

remove from cluster
 More for Condo owners or Groups who 

have bought extra disk space.
 Regardless, NO DATA IS BACKED UP



SGE and qsub scripts

 SGE / GE is the HPC scheduler
 A complex app that matches resource 

requests with the cluster resources.
 Resources are:

– # of CPU cores
– RAM
– Special hardware (GPUs) 



SGE Queues

 There are 3 main types of Qs
– Free*: open to everyone
– Group: open to the group
– Owner: Open to the owner/lab

 To see what Qs you can submit to:
– 'q'



SGE Utilities

 qstat: list the status of ALL the jobs
– qstat -u <you> more useful

 qdel: delete your jobs

– qdel -u <you> deletes ALL your jobs

– qdel <GEJobID> (not PID)

– qdel -f <GEJobID> force-kills the job  
 qsub job.sh submits 'job.sh' to scheduler



qsub

 qsub script is just a bash script with 
some special SGE directives.

 Bash comments prefixed with '#'
 SGE directives prefixed with '#$'

– To reserve CPUs, RAM, 
– particular CPU-loading
– Checkpointing
– Set up job arrays

 Job arrays?



SGE Job types

 The only type of job that can't be run 
via the scheduler is one that requires 
human intervention.

 Serial jobs
 Parallel jobs – faster! Or not?
 Job Arrays
 Checkpointing



Example qsub jobs

 Sleeper <http://goo.gl/EsGOgD>

 Generic qsub with lots of comments
<http://goo.gl/qfqieL> 

 Job that uses /scratch <http://goo.gl/6uY1hh>

 Array Job <http://goo.gl/rwurvX>

 Python qsub script generator 
<http://goo.gl/oIya1E>

http://goo.gl/EsGOgD
http://goo.gl/qfqieL
http://goo.gl/6uY1hh
http://goo.gl/rwurvX
http://goo.gl/oIya1E


And some warnings:

 qsub scripts are bash scripts with some GE 
directives; if they don't run in your bash 
shell, they won't run under GE.

 Run them with small sets of data until you 
know their behavior and how many 
resources they'll use.

 Once they run fine from the shell, submit 
them to GE with small sets of data.

 Then submit the full data set.
 And use mail carefully. (No Array jobs!)



Questions? 

Preferences?

Specific Techniques?



Some follow-ups...

 MacOSX, hilite file and [cmd+i]→ full path
 rsync – beware of '--delete' and if you're 

going to use it, use '-n' 1st

 Problem of 2 login nodes – use 'byobu'
 Identifying & Stopping processes.
 Permissions, chmod, and #!shebang
 Environment variables
 ~/.bashrc, aliases, DirB
 sshfs and where it makes sense to use it

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#bewaredelete
http://goo.gl/1wCnrH
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#_permissions_chmod_amp_chown
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#DirB


Some more follow-ups...

 How to set up ssh keys .
 IO Redirection
 The grep family

http://hpc.oit.uci.edu/HPC_USER_HOWTO.html#HowtoPasswordlessSsh
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#ioredirection
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#_the_grep_family


Before BigData, 
How to think about Data 

in general 



Data as a 747

Think of your data as an airplane

 Takes huge energy & time to get off 
the ground

 Once in flight, keep it in flight.

 Every time it lands, takes a lot of 
time to get it flying again. 



Time of Byte Flights

Path / Timing of bytes thru the cluster
 CPU Registers: 1x10-10 sec
 1o cache: 10-50x10-10 sec
 2o cache: 100-500x10-10 sec
 Main RAM: 1-10x10-9 sec
 Network: 10x10-6 sec
 Flash Memory: 200x10-6 sec
 Disk: 5x10-3 sec



Data Latency



Data Latency Analogy



Inodes and ZOT Files

 Inodes contain the metadata for files and dirs
 Inodes are pointers to the data
 Regardless of size, a file needs at least one 

inode to locate it.
 A file of 1 byte takes up the same minimum 

inode count as a file of 1TB
 DO NOT USE ZOTFILES!! – Zillions of Tiny 

Files



How not to write ZOTfiles

  
 Append to a single file (100s of processes 

across many nodes can write to a single file via 
file-locking.  See <http://goo.gl/EOf4qW>. 

 Write to a Relational Database.
 Write continuously to custom Binary format.
 Write to a language-specific DATADUMP 

format.
  Write to a well-documented data format such 

as HDF5, FITS, netCDF, etc.



Processing Data on Linux

  

 The bash language is mostly awful.  
 The redirection operators (<,>,|,>>,&>,2>, tee) 

are awesome, incredibly powerful, and often 
aggravating.

 bg, fg, jobs, scheduler, and  cluster computing 
are incredible powerful. Learn to use them.

 free Linux utilities allow stream-oriented data 
parsing, cleansing, slicing, and dicing.

http://goo.gl/EOf4qW


Unix Philosophy 

  

 Even longer than Linux, there is a long legacy 
of free, Open Source tools.

 Typically do a few things but do them well & 
fast.  Input ← STDIN, Errors → STDERR, 
Output → STDOUT.

 Lots of these tools, developed over 50 yrs of 
various shells, OS variants, languages.

 The interface tends not to change very much, 
so learn it once and know it forever.



Excel (gacckkkk) files

  

 A lot of data is still in Excel files, so..
 Learn how to use it on Linux.
 Via LibreOffice (similar to MS Office)
 Or extract the data and process in pipelines 
 With the native app.
 Or via cmdline utilities.



Excel data extraction

  
Some interchange utilities:

 Tika – interconverts many, many formats.
Needs: alias tika="java -jar /data/hpc/bin/tika-app-1.6.jar"

 antiword, xls2csv, pdftotext
 The output of these utilities usually need 

further cleaning with other utilities.
 It never ends...   

http://goo.gl/T9hl


If you must write ASCII..

  

 Write delimited, tabular data so it can be parsed 
more easily.

 Don't replicate data pointlessly.
 Write into large buffers 1st, then write to files in 

large chunks.
 Truncate floating point values to useful 

accuracy (23.47063848577682764101945 →  
23.47)
26 bytes vs 5 bytes for no extra value

 Don't confuse high precision with high accuracy.



The line eater: Perl

  
while (<>) {
$N = @values = split(/token/);
# some kind of eval
}

  



The line eater: Python

  
import sys
for line in sys.stdin:

values = data.split('token');
     



Slicing & Dicing ASCII data

  

 ASCII will be your 1st exp with data on Linux
 ..and before any analysis: Data Cleansing
 Select rows: grep based on a regex
 Select columns: cols, cut/scut
 Often have to merge files

• Needle and haystack problem (relational 
join): join, scut
• Bulk merge: cat, paste, diff, comm, pr



Binary Data

  

 All data is binary, but...
 Binary storage is a special case of data 

representation.  
 Data is stored as the byte-wise representation 

of the data, not character-wise
 ie: '123' could be be stored in 1 byte, not 3.
 9814.98 floating point representation. 

– single precision FP (32b →  4bytes)
– double precision FP (64b → 8bytes)
– And even higher (128b)

http://moo.nac.uci.edu/~hjm/scut_cols_HOWTO.html


More Binary Data

  

 In binary, values are stored without separation 
tokens so numbers are packed more efficiently 
as well.

 Some data formats allow specification of the 
precision of the value so they can use the most 
efficient representation of the number.

163631823645618364912152ducksheepshark387ratthingpokemon
   \   \    \  \        \   \         \  \       \      
%3d, %4d, %5d,%3d,%9.4f, %4s,  %10s,   %3d,  %8s, %7s # read spec



Compression

 Compression saves disk space and network 
bandwidth and speed.

 It costs CPU time to both compress and 
decompress, but compression is much more 
costly.

 Lossy vs Lossless compression. (JPEG vs gzip)
 ASCII text can be compressed  ~ 2-3X
 XML can be compressed ~ 20X
 Random data doesn't compress well at all.



$ time dd if=/dev/urandom of=urandom.1G count=1000000 
bs=1000
1000000+0 records in
1000000+0 records out
1000000000 bytes (1.0 GB) copied, 82.8871 s, 12.1 MB/s
real    1m22.889s
  ================================================
$ time gzip urandom.1G 
real    0m34.601s
  ================================================
$ ls -l urandom.1G.gz 
-rw-r--r-- 1 hjm hjm 1000162044 Nov 14 12:03 urandom.1G.gz
--------------------------------------------------------
--------------------------------------------------------

So compressing nearly random data actually results in 
INCREASING the file size.



Compressing pure repetitive data from the '/dev/zero' device:
------------------------------------------------------------------------
$ ls -l zeros.1G
-rw-r--r-- 1 hjm hjm 1000000000 Nov 14 11:31 zeros.1G
  ================================================
$ time gzip zeros.1G
real    0m7.100s
  ================================================
 $ ls -l zeros.1G.gz 
-rw-r--r-- 1 hjm hjm 970510 Nov 14 11:32 zeros.1G.gz
------------------------------------------------------------------------

So in much less time (7s vs 34s), we get a 1000X compression.



But wait, there's more!

What about bzip2? 
It does a much better job:
--------------------------------------------------
$ ls -l zeros.1G
-rw-r--r-- 1 hjm hjm 1000000000 Nov 14 11:31 zeros.1G
  ====
$ time bzip2 zeros.1G
real    0m10.106s
  ====
$ ls -l zeros.1G.bz2 
-rw-r--r-- 1 hjm hjm 722 Nov 14 11:32 zeros.1G.bz2
--------------------------------------------------

Or, about 1.3MillionX compression (about the same as you 
get if you compress Electronic Dance Music)



More Compression

 Many utilities will enable in-line compression.
 This is fine for small transfers, but for large 

transfers, it's often better to archive and then 
use parallel compression.

 pigz – parallel form of gzip
 pbzip2 – parallel form of bzip2
 Both are almost perfectly parallel.



[De]Compression

 If your applications can deal with compressed 
data, KEEP IT COMPRESSED. Many popular 
apps (esp bioinfo) now allow this.

 If they can't, try to use pipes (|) to decompress 
in memory and feed the decompressed stream 
to the app. 

 Use native utilities to examine the compressed 
data (zcat/unzip/gunzip,  grep, archivemount,  
vitables, ncview, etc.



Moving BigData

 1st: Don't.
 Otherwise, plan where your data will live for the life of the 

analysis, have it land there, and don't move it across 
filesystems.

 Don't DUPLICATE DUPLICATE DUPLICATE BigData
 See: <http://goo.gl/2iaHqD>

• rsync for modified data
• bbcp for new transfers of large single files, regardless of 
network
• tar/netcat for deep/large dir structures over LANs
• tar/gzip/bbcp to copy deep/large dir structures over WANs



rsync

 If you only want to use one tool, it's rsync.
 rsync -av /from/here /to/there
 Can encrypt and compress data (but don't try to compress 

already compressed data)
 Specialized variants for multi-TB data.

$ rsync -av /this/dir/   /that/DIR   
#                  ^
# note that trailing '/'s matter.
# above cmd will sync the CONTENTS of '/this/dir' to 
'/that/DIR'
# generally what you want.

$ rsync -av /this/dir   /that/DIR   
#                  ^
# will sync '/this/dir' INTO '/that/DIR', 
# so the contents of '/that/DIR' will
# INCLUDE '/this/dir' after the rsync.

http://goo.gl/2iaHqD


bbcp

 If you only want to use 2 tools, the 2nd one is bbcp.
 Used almost like rsync.
 But is much worse for doing recursive copies
 Especially with lots of small files.
 Will compress, but does NOT encrypt data.

$ bbcp  bigfile   user@host:/high/perf/raid/file
# can get about 50-60MB/s over 1GbE

bbcp -P 10 -w 2M -s 10 bigfile \
user@host:/high/perf/raid/file
# this can get us 80-110MB/s over 1GbE.



Checksums

 Represent the identity of a file. If one bit 
changes, the checksum changes.

 md5sum / jacksum
 Use MANIFEST files & copy them along with 

the data files.
 See checksum example.
 Integrate checksums as part of your 

qsub scripts

mailto:user@host
mailto:user@host


Timing and profiling

  

 Only applies to writing your own code, but it's 
good to start thinking about this early.

 top, atop, free, htop, pstree
 'time', '/usr/bin/time'
 oprofile, perf, HPCToolkit, valgrind

http://goo.gl/uvB5Fy
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#annotatedqsub


htop



$ free -g -l



$ time ./tacg -n6 -S -o5 -s  < hg19/chr1.fa  > out

real    0m10.599s
user    0m10.456s
sys     0m0.145s

time     (bash built-in)



$ /usr/bin/time ./tacg -n6 -S -o5 -s  < hg19/chr1.fa  > out

10.47user 0.14system 0:10.60elapsed 100%CPU 
(0avgtext+0avgdata 867984maxresident)k
0inputs+7856outputs (0major+33427minor)pagefaults 0swaps

/usr/bin/time 



$ operf ./tacg -n6 -S -o5 -s  < hg19/chr1.fa  > out
operf: Profiler started

$ opreport --exclude-dependent --demangle=smart --symbols ./tacg
Using /home/hjm/tacg/oprofile_data/samples/ for samples directory.
CPU: Intel Ivy Bridge microarchitecture, speed 2.501e+06 MHz 

samples  %        symbol name
132803   43.1487  Cutting
86752    28.1864  GetSequence2
49743    16.1619  basic_getseq
9098      2.9560  Degen_Calc
7522      2.4440  fp_get_line
7377      2.3968  HorribleAccounting
6560      2.1314  abscompare
4287      1.3929  Degen_Cmp
2600      0.8448  main
704       0.2287  basic_read
212       0.0689  BitArray
112       0.0364  PrintSitesFrags
3        9.7e-04  ReadEnz
3        9.7e-04  hash.constprop.2
2        6.5e-04  hash
1        3.2e-04  Read_NCBI_Codon_Data
1        3.2e-04  palindrome

oprofile



Big Data

 Volume
 Scary sizes, and getting bigger

 Velocity
 Special approaches to speed up analysis

 Variety
 Domain-specific standards (HDF5/netCDF, bam/sam, 

FITS), but often aggregations of unstructured data
• No one-technique-fits-all, but will present general
    techniques that should help with a number of
    approaches.
•BigData Hints for Newbies 
   <http://goo.gl/aPj4az>



Big Data – How Big is Big?

http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html
http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html


Integer Byte Sizes



Data Types

 Alphanumeric Strings
“the rain in spain is green”

 Integers
12, 4, 126987, -4432, 2014, 0

 Floats
-234.2987, 3.633E17, 5.51e-5

 Booleans
1, 0, T, F, 

 Vectors of above



Processing BigData

 Files (HDF5, bam/sam) and specialized utilities 
(nco/ncview, [Py/Vi]tables, R, Matlab)

 Relational Dbs (SQLite, Postgres, MySQL)
 NoSQLs (MongoDB, CouchDB)
 Binary Dumps (Perl's Data::Dumper, Python's 

pickle)
 Non-Storage (pipes, named pipes/FIFOs, 

sockets)
 Keep it RAM-resident.



Formal Relational Schema



EMBL String DB  Schema

http://string71.embl.de/newstring_download/database.schema.v7.1.pdf



Schematic Schema (Circos)



Querying an RDB with SQL

 Structured Query Language (SQL) is a formal 
query language for admin'g RDBs & specifying 
relationships across tables.

 Ugly, unintuitive, but very powerful.  
 Select statements will be your entry to SQL



Fomal grammar flowchart 
of the SELECT clause.



Select Example:

http://www.w3schools.com/sql/default.asp Queries: http://goo.gl/S5L3fE 



NoSQL Databases

 A BigData-driven development
 Designed for Scale and Speed over reliability.
 Most designed to shard or distribute ops
 Not really designed for relational operations.
 Many designed for Key:Something mappings
 Many are not ACID (Atomic, Consistent, 

Isolated, Durable).
 Many variants now available, many OSS.

http://www.w3schools.com/sql/default.asp
http://goo.gl/S5L3fE


Slicing & Dicing Big Data

 Use format-specific tools. At this scale, cut, 
grep, etc don't work so well.

 ncview, nco, for netCDF
 h5py, pytables, vitables, R, hdfview, for HDF
 well-documented APIs for most 

languages;  even specific books.
 Writing and reading such formats 

  is not as hard as it might appear.
 These formats are just data 

  containers, much like ASCII files.

http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://en.wikipedia.org/wiki/NoSQL


HDF5 Internal Structure 

●  Datasets: arrays of homogeneous types – int's,
 floating points, strings, bools.

●  Groups: collections of 'Datasets' or other 
'Groups', leading to the ability to store data in a 
hierarchical, directory-like structure, hence the 
name.

● Attributes: Metadata about the Datasets, which 
can be attached to the data.  Internal or external.
(as with XDF or SDCubes).



HDF5 file format

http://docs.h5py.org/en/2.3/quick.html
http://www.pytables.org/moin
http://moo.nac.uci.edu/~hjm/AnRCheatsheet.html#hdf5


HDF5 visualizers

 hdfview and ncview can visualize the layout and data of HDF5 & netCDF  files
HDF5 used as primary storage for PacBio data

R can read HDF5 files with h5r and pbh5



Relational vs Hierarchical 

●  HDF5 (& similar formats) are designed to allow 
large amounts of numerical data to be read and 
written (and re-written).

● Relational Databases are designed to answer 
relational queries and allow small, fast data 
inserts and modifications.

● These 2 approaches are quite different
● Be careful which approach you take.



Optimization 

● To process BigData, you need efficient code.
● To find inefficient code, you profile it.

● 'time' vs '/usr/bin/time -v'
● gross overview of how long it tool

● Oprofile
● Easily gives you per-function time sinks 

● HPCToolkit
● Per-line time & hardware counter execs

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#hdfview


BigData needs Parallelism (//) 

● The bigger the data, the more you need //ism.
● Easy: what's given to you on the cluster.

● // filesystem.
● Pretty Easy: Splitting your analysis & data into 
independent streams & chunks.  
● Using SGE, Job Arrays, // functions, and all the 
spare cores on the cluster.

● Damn Hard: Writing your own programs to do 
analysis in //, using OpenMP, MPI, CUDA, 
OpenCL, Julia 



Embarrassingly Parallel (EP)

● Where the analysis of any chunk of data is 
independent of the analysis of any other chunk.

● Break the data into equal sized pieces and 
spread them out over all the CPUs you can.

● aka Single Process, Multiple Data (SPMD)
● more loosely: Scatter/Gather
● What GPUs are REALLY good at.



Hadoop / MapReduce

● Special cases where you have EP jobs and lots 
of cores to throw at it.

● Hadoop is actually the underlying parallel FS
● Not a general-purpose FS; not POSIX (and 
HPC already has a // FS).

● MapReduce (~Producer / Consumer model)
● Map decomposes the data into required form.
● Reduce does the analysis.



Map(Shuffle)Reduce

● Map: Each worker node applies the "map()" function 
to the local data, writes the output to a temporary 
storage (HDFS). A master node orchestrates that for 
redundant copies of input data, only one is processed.

● Shuffle: Worker nodes redistribute data based on 
the output keys (produced by the "map()" function), 
such that all data belonging to one key is located on 
the same worker node.

● Reduce: Worker nodes now process each group of 
output data, per key, in parallel.



Hadoop improvements

● Spark – more sophisticated, in-memory analytics 
engine (replaces MapReduce)

● Hive – Data warehouse built on top of HadoopFS
● Shark – Spark on Hive
● Pig – Language (PigLatin) for automating the 

production of MapReduce programs – sort of an SQL 
for MR pipelines.

Many of these technologies require Hadoop-ish 
semantics, but HPC already has a fast // FS and 
Hadoop can be emulated on top of the exiting FS.



BigData, not ForeverData

 HPC is not backed-up.

 Cannot tolerate old, unused BigData.

 RobinHood is looking for your old BigData.

 Please help us by doing your own data triage.

 Ask your PIs to bug our boss to provide more 
resources so we can provide more resources.



Visualizing BigData

 Lots of points means special apps for visualizing 
them.

 Visualization techniques for mapping variables onto 
color, texture, symbol types and sizes, transparency, 
vectors, time series, maps, interactivity 

 Wunderground, gapminder, Circos, gephi





http://www.wunderground.com/
http://www.gapminder.org/
http://circos.ca/


Circos visualizations



Gephi Visualizations





Visualization Apps

  
● Simple Data Visualization 
 <http://goo.gl/TNJv8h>

● Multivariate Data Visualization
 <http://goo.gl/32AXAO> 

● Roll your own with 
 <https://processing.org>
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