
BigData on Linux

Linux: Harry Mangalam
harry.mangalam@uci.edu

mailto:harry.mangalam@uci.edu

HPC Emails

• Always cc: <hpc-support@uci.edu>
• Joseph Farran <jfarran@uci.edu>
• Harry Mangalam <hmangala@uci.edu>
• Garr Updegraff <garru@uci.edu>
• Adam Brenner <aebrenne@uci.edu>
• Edward Xia <xias@uci.edu>

mailto:garru@uci.edu
mailto:aebrenne@uci.edu

Course Survey

http://goo.gl/yPS6WK

Intentions

• Not a HOWTO on specific BigData techniques
• Introduction of how to think about large-scale

computing.
• What I wish someone had told me when I was

starting out with Unix/Linux.
• I am not a CS guy so a few of my

explanations may be formally wrong.
• But mostly I'm right, or right enough.
• Remember...

Good Judgement comes from Experience

Experience comes from Bad Judgement

I assume...

• You are now familiar with Linux and at least a
little familiar with cluster computing.

• You're bright: can Google, and read further by
yourself.

• If I speak too fast; let me know
• Questions, ASK THEM, but I may not answer

them immediately. – “You don’t know what you
don’t know”

Some of you...

– Writing your own apps
– Starting with interpreted languages
– Maybe moving to compiled languages
– Trying to parallelize your work (trivial or
sophisticated approaches).

This involves BEING a programmer.

All of you..

– Cleansing your data (bash, utilities)
– Writing qsub scripts → SGE
– Running pre-written apps with your data
– Pushing large amounts of data thru HPC
– Developing your own workflows to do this

All these tasks require THINKING like a
programmer.

Computing Philosophy

Unlike your Science...
 Be lazy.
 Copy others.
 Don't invent anything you don't have to.
 Re-USE, re-CYCLE, DON'T re-invent.
 Do the easy stuff first.
 Don't be afraid to ask others.
 Try it, but try it small at first.

• Resort to new code only when absolutely necessary.
• Optimize only as a last resort.

Linux & the HPC Cluster

• Linux
• Bash shell & variables
• Commands
• Pipes
• The HPC cluster
• Distributed file systems

Introduction to Linux on the HPC Cluster

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html

Getting Help

• Fix IT Yourself with Google <goo.gl/05MnTi>
 Listservs, forums, IRCs are VERY useful for

more involved questions
 The HPC Doc list: <http://hpc.oit.uci.edu/>
 HPC HOWTO <http://goo.gl/kzlqI>
 Us – Adam, Harry, Garr, Joseph.
 BUT!! Please ask questions intelligently.

http://hpc.oit.uci.edu/
http://goo.gl/kzlqI

How to Ask Questions

 Reverse the situation: if you were answering the
question, what information would you need?

 Not Science, but it is Logic.
 Include enough info to recreate the problem.
 Exclude what's not helpful or ginormous (use

<pastie.org> or <tny.cz>)
 Use text, not screenshots if possible.

Bad Question

Why doesn’t “X” work?

Good Question

I tried running the new podunk/2.8.3 module this morning and it
looks like I can't get it to launch on the Free64 queue. My output
files aren't helping me figure out what is wrong.

I am working out of /bio/joeuser/RNA_Seq_Data/
and the qsub script is 'job12.sh'. The output should be in

● /bio/joeuser/RNA_Seq_Data/output

When I submit the job, it appears to go thru the scheduler but
then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the Error
messages suggest that there's a problem finding libgorp.so.3

HELP US HELP YOU

We need this information:

- the directory in which you’re working (pwd),
- the machine you’re working on (hostname)
- modules loaded (module list)
- computer / OS you’re connecting from
- the command you used and the error it

caused (in /text/, not screenshot)
- much of this info is shown by your prompt

http://goo.gl/6eZORd

On to HPC

What is the High Performance Computing Cluster?

and…

Why do I need HPC?

What is a Cluster?

 bunch of big general purpose computers
 running the Linux Operating System
 linked by some form of networking
 have access to networked storage
 that can work in concert to address large

problems
 by scheduling jobs very efficiently

HPC @ UCI in Detail

 ~5500 64b Cores – Mostly AMD, few Intel
 4+ Nvidia Tesla GPUs (2880 cores each)
 ~14TB aggregate RAM
 ~1PB of storage (1000x slower than RAM)
 Control network = 1Gb ethernet (100MB/s)
 Data network = QDR IB (5GB/s)
 Grid Engine Scheduler to handle Queues
 > 650 users, 100+ are online at anytime

Overview

A hard disk

Storage Server

Client

Metadata server

Storage Servers

??

A:7265
B:9286
C:0757
D:9822
E:9667

A B C D E

Applications on HPC

 We use the 'module system' to set up environments
for specific applications, libraries, and compilers.

 module purge
 module avail prefix
 module list
 module whatis name
 module load name/version
 Rec NOT preloading a lot of modules.

What HPC is NOT

 NOT your personal machine

 What you do on your machine affects YOU

 What you do on HPC affects the 1000s of other
jobs running

 Think before you hit Enter.

What HPC is also NOT

NOT BACKED UP

WHAT. SO. EVER.

DATA IS NOT BACKED UP

 Agitate to your PIs to get us more $ if you
want this.

 Most data is stored on RAID6
 BUT! Any of that can disappear at any

moment
 IF ITS VALUABLE, back it up elsewhere ---

or the code that generated it.

HPC FileSystem Layout

Orange – Cluster Wide

Black – Node Specific

/

├── data/ NFS Mount

 |─apps All Programs are installed here

 |─users Users home directory – 50GB LIMIT PER USER

├── w1/ Public NFS Server → Going away – 14TB Space

├── w2/ Public NFS Server → Going away – 40TB Space
● |----- pub/ Replacement for /w1, /w2

├── bio/ Space for BIO group → /dfs1
● ├── som/ Space for SOM group → /dfs1

├── cbcl/ Space for CBCL group → /dfs1

├── dfs1/ Fraunhofer FileSystem – new, Distributed File System ~380TB Space

├── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB of Space

├── fast-scratch High Speed Fraunhofer FileSystem for temporary storage - 13TB
● |----- ssd-scratch Very High IOPS for DB, other jobs.
● ├── /tmp Same as scratch

Disk Space / Quotes / Policies

 You can only have so much space
 50GB for /data/ ($HOME directory)
 1yr or older without use – please

remove from cluster
 More for Condo owners or Groups who

have bought extra disk space.
 Regardless, NO DATA IS BACKED UP

SGE and qsub scripts

 SGE / GE is the HPC scheduler
 A complex app that matches resource

requests with the cluster resources.
 Resources are:

– # of CPU cores
– RAM
– Special hardware (GPUs)

SGE Queues

 There are 3 main types of Qs
– Free*: open to everyone
– Group: open to the group
– Owner: Open to the owner/lab

 To see what Qs you can submit to:
– 'q'

SGE Utilities

 qstat: list the status of ALL the jobs
– qstat -u <you> more useful

 qdel: delete your jobs

– qdel -u <you> deletes ALL your jobs

– qdel <GEJobID> (not PID)

– qdel -f <GEJobID> force-kills the job
 qsub job.sh submits 'job.sh' to scheduler

qsub

 qsub script is just a bash script with
some special SGE directives.

 Bash comments prefixed with '#'
 SGE directives prefixed with '#$'

– To reserve CPUs, RAM,
– particular CPU-loading
– Checkpointing
– Set up job arrays

 Job arrays?

SGE Job types

 The only type of job that can't be run
via the scheduler is one that requires
human intervention.

 Serial jobs
 Parallel jobs – faster! Or not?
 Job Arrays
 Checkpointing

Example qsub jobs

 Sleeper <http://goo.gl/EsGOgD>

 Generic qsub with lots of comments
<http://goo.gl/qfqieL>

 Job that uses /scratch <http://goo.gl/6uY1hh>

 Array Job <http://goo.gl/rwurvX>

 Python qsub script generator
<http://goo.gl/oIya1E>

http://goo.gl/EsGOgD
http://goo.gl/qfqieL
http://goo.gl/6uY1hh
http://goo.gl/rwurvX
http://goo.gl/oIya1E

And some warnings:

 qsub scripts are bash scripts with some GE
directives; if they don't run in your bash
shell, they won't run under GE.

 Run them with small sets of data until you
know their behavior and how many
resources they'll use.

 Once they run fine from the shell, submit
them to GE with small sets of data.

 Then submit the full data set.
 And use mail carefully. (No Array jobs!)

Questions?

Preferences?

Specific Techniques?

Some follow-ups...

 MacOSX, hilite file and [cmd+i]→ full path
 rsync – beware of '--delete' and if you're

going to use it, use '-n' 1st

 Problem of 2 login nodes – use 'byobu'
 Identifying & Stopping processes.
 Permissions, chmod, and #!shebang
 Environment variables
 ~/.bashrc, aliases, DirB
 sshfs and where it makes sense to use it

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#bewaredelete
http://goo.gl/1wCnrH
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#_permissions_chmod_amp_chown
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#DirB

Some more follow-ups...

 How to set up ssh keys .
 IO Redirection
 The grep family

http://hpc.oit.uci.edu/HPC_USER_HOWTO.html#HowtoPasswordlessSsh
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#ioredirection
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#_the_grep_family

Before BigData,
How to think about Data

in general

Data as a 747

Think of your data as an airplane

 Takes huge energy & time to get off
the ground

 Once in flight, keep it in flight.

 Every time it lands, takes a lot of
time to get it flying again.

Time of Byte Flights

Path / Timing of bytes thru the cluster
 CPU Registers: 1x10-10 sec
 1o cache: 10-50x10-10 sec
 2o cache: 100-500x10-10 sec
 Main RAM: 1-10x10-9 sec
 Network: 10x10-6 sec
 Flash Memory: 200x10-6 sec
 Disk: 5x10-3 sec

Data Latency

Data Latency Analogy

Inodes and ZOT Files

 Inodes contain the metadata for files and dirs
 Inodes are pointers to the data
 Regardless of size, a file needs at least one

inode to locate it.
 A file of 1 byte takes up the same minimum

inode count as a file of 1TB
 DO NOT USE ZOTFILES!! – Zillions of Tiny

Files

How not to write ZOTfiles

 Append to a single file (100s of processes

across many nodes can write to a single file via
file-locking. See <http://goo.gl/EOf4qW>.

 Write to a Relational Database.
 Write continuously to custom Binary format.
 Write to a language-specific DATADUMP

format.
 Write to a well-documented data format such

as HDF5, FITS, netCDF, etc.

Processing Data on Linux

 The bash language is mostly awful.
 The redirection operators (<,>,|,>>,&>,2>, tee)

are awesome, incredibly powerful, and often
aggravating.

 bg, fg, jobs, scheduler, and cluster computing
are incredible powerful. Learn to use them.

 free Linux utilities allow stream-oriented data
parsing, cleansing, slicing, and dicing.

http://goo.gl/EOf4qW

Unix Philosophy

 Even longer than Linux, there is a long legacy
of free, Open Source tools.

 Typically do a few things but do them well &
fast. Input ← STDIN, Errors → STDERR,
Output → STDOUT.

 Lots of these tools, developed over 50 yrs of
various shells, OS variants, languages.

 The interface tends not to change very much,
so learn it once and know it forever.

Excel (gacckkkk) files

 A lot of data is still in Excel files, so..
 Learn how to use it on Linux.
 Via LibreOffice (similar to MS Office)
 Or extract the data and process in pipelines
 With the native app.
 Or via cmdline utilities.

Excel data extraction

Some interchange utilities:

 Tika – interconverts many, many formats.
Needs: alias tika="java -jar /data/hpc/bin/tika-app-1.6.jar"

 antiword, xls2csv, pdftotext
 The output of these utilities usually need

further cleaning with other utilities.
 It never ends...

http://goo.gl/T9hl

If you must write ASCII..

 Write delimited, tabular data so it can be parsed
more easily.

 Don't replicate data pointlessly.
 Write into large buffers 1st, then write to files in

large chunks.
 Truncate floating point values to useful

accuracy (23.47063848577682764101945 →
23.47)
26 bytes vs 5 bytes for no extra value

 Don't confuse high precision with high accuracy.

The line eater: Perl

while (<>) {
$N = @values = split(/token/);
some kind of eval
}

The line eater: Python

import sys
for line in sys.stdin:

values = data.split('token');

Slicing & Dicing ASCII data

 ASCII will be your 1st exp with data on Linux
 ..and before any analysis: Data Cleansing
 Select rows: grep based on a regex
 Select columns: cols, cut/scut
 Often have to merge files

• Needle and haystack problem (relational
join): join, scut
• Bulk merge: cat, paste, diff, comm, pr

Binary Data

 All data is binary, but...
 Binary storage is a special case of data

representation.
 Data is stored as the byte-wise representation

of the data, not character-wise
 ie: '123' could be be stored in 1 byte, not 3.
 9814.98 floating point representation.

– single precision FP (32b → 4bytes)
– double precision FP (64b → 8bytes)
– And even higher (128b)

http://moo.nac.uci.edu/~hjm/scut_cols_HOWTO.html

More Binary Data

 In binary, values are stored without separation
tokens so numbers are packed more efficiently
as well.

 Some data formats allow specification of the
precision of the value so they can use the most
efficient representation of the number.

163631823645618364912152ducksheepshark387ratthingpokemon
 \ \ \ \ \ \ \ \ \
%3d, %4d, %5d,%3d,%9.4f, %4s, %10s, %3d, %8s, %7s # read spec

Compression

 Compression saves disk space and network
bandwidth and speed.

 It costs CPU time to both compress and
decompress, but compression is much more
costly.

 Lossy vs Lossless compression. (JPEG vs gzip)
 ASCII text can be compressed ~ 2-3X
 XML can be compressed ~ 20X
 Random data doesn't compress well at all.

$ time dd if=/dev/urandom of=urandom.1G count=1000000
bs=1000
1000000+0 records in
1000000+0 records out
1000000000 bytes (1.0 GB) copied, 82.8871 s, 12.1 MB/s
real 1m22.889s
 ==
$ time gzip urandom.1G
real 0m34.601s
 ==
$ ls -l urandom.1G.gz
-rw-r--r-- 1 hjm hjm 1000162044 Nov 14 12:03 urandom.1G.gz
--
--

So compressing nearly random data actually results in
INCREASING the file size.

Compressing pure repetitive data from the '/dev/zero' device:
--
$ ls -l zeros.1G
-rw-r--r-- 1 hjm hjm 1000000000 Nov 14 11:31 zeros.1G
 ==
$ time gzip zeros.1G
real 0m7.100s
 ==
 $ ls -l zeros.1G.gz
-rw-r--r-- 1 hjm hjm 970510 Nov 14 11:32 zeros.1G.gz
--

So in much less time (7s vs 34s), we get a 1000X compression.

But wait, there's more!

What about bzip2?
It does a much better job:
--
$ ls -l zeros.1G
-rw-r--r-- 1 hjm hjm 1000000000 Nov 14 11:31 zeros.1G
 ====
$ time bzip2 zeros.1G
real 0m10.106s
 ====
$ ls -l zeros.1G.bz2
-rw-r--r-- 1 hjm hjm 722 Nov 14 11:32 zeros.1G.bz2
--

Or, about 1.3MillionX compression (about the same as you
get if you compress Electronic Dance Music)

More Compression

 Many utilities will enable in-line compression.
 This is fine for small transfers, but for large

transfers, it's often better to archive and then
use parallel compression.

 pigz – parallel form of gzip
 pbzip2 – parallel form of bzip2
 Both are almost perfectly parallel.

[De]Compression

 If your applications can deal with compressed
data, KEEP IT COMPRESSED. Many popular
apps (esp bioinfo) now allow this.

 If they can't, try to use pipes (|) to decompress
in memory and feed the decompressed stream
to the app.

 Use native utilities to examine the compressed
data (zcat/unzip/gunzip, grep, archivemount,
vitables, ncview, etc.

Moving BigData

 1st: Don't.
 Otherwise, plan where your data will live for the life of the

analysis, have it land there, and don't move it across
filesystems.

 Don't DUPLICATE DUPLICATE DUPLICATE BigData
 See: <http://goo.gl/2iaHqD>

• rsync for modified data
• bbcp for new transfers of large single files, regardless of
network
• tar/netcat for deep/large dir structures over LANs
• tar/gzip/bbcp to copy deep/large dir structures over WANs

rsync

 If you only want to use one tool, it's rsync.
 rsync -av /from/here /to/there
 Can encrypt and compress data (but don't try to compress

already compressed data)
 Specialized variants for multi-TB data.

$ rsync -av /this/dir/ /that/DIR
^
note that trailing '/'s matter.
above cmd will sync the CONTENTS of '/this/dir' to
'/that/DIR'
generally what you want.

$ rsync -av /this/dir /that/DIR
^
will sync '/this/dir' INTO '/that/DIR',
so the contents of '/that/DIR' will
INCLUDE '/this/dir' after the rsync.

http://goo.gl/2iaHqD

bbcp

 If you only want to use 2 tools, the 2nd one is bbcp.
 Used almost like rsync.
 But is much worse for doing recursive copies
 Especially with lots of small files.
 Will compress, but does NOT encrypt data.

$ bbcp bigfile user@host:/high/perf/raid/file
can get about 50-60MB/s over 1GbE

bbcp -P 10 -w 2M -s 10 bigfile \
user@host:/high/perf/raid/file
this can get us 80-110MB/s over 1GbE.

Checksums

 Represent the identity of a file. If one bit
changes, the checksum changes.

 md5sum / jacksum
 Use MANIFEST files & copy them along with

the data files.
 See checksum example.
 Integrate checksums as part of your

qsub scripts

mailto:user@host
mailto:user@host

Timing and profiling

 Only applies to writing your own code, but it's
good to start thinking about this early.

 top, atop, free, htop, pstree
 'time', '/usr/bin/time'
 oprofile, perf, HPCToolkit, valgrind

http://goo.gl/uvB5Fy
http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#annotatedqsub

htop

$ free -g -l

$ time ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out

real 0m10.599s
user 0m10.456s
sys 0m0.145s

time (bash built-in)

$ /usr/bin/time ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out

10.47user 0.14system 0:10.60elapsed 100%CPU
(0avgtext+0avgdata 867984maxresident)k
0inputs+7856outputs (0major+33427minor)pagefaults 0swaps

/usr/bin/time

$ operf ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out
operf: Profiler started

$ opreport --exclude-dependent --demangle=smart --symbols ./tacg
Using /home/hjm/tacg/oprofile_data/samples/ for samples directory.
CPU: Intel Ivy Bridge microarchitecture, speed 2.501e+06 MHz

samples % symbol name
132803 43.1487 Cutting
86752 28.1864 GetSequence2
49743 16.1619 basic_getseq
9098 2.9560 Degen_Calc
7522 2.4440 fp_get_line
7377 2.3968 HorribleAccounting
6560 2.1314 abscompare
4287 1.3929 Degen_Cmp
2600 0.8448 main
704 0.2287 basic_read
212 0.0689 BitArray
112 0.0364 PrintSitesFrags
3 9.7e-04 ReadEnz
3 9.7e-04 hash.constprop.2
2 6.5e-04 hash
1 3.2e-04 Read_NCBI_Codon_Data
1 3.2e-04 palindrome

oprofile

Big Data

 Volume
 Scary sizes, and getting bigger

 Velocity
 Special approaches to speed up analysis

 Variety
 Domain-specific standards (HDF5/netCDF, bam/sam,

FITS), but often aggregations of unstructured data
• No one-technique-fits-all, but will present general
 techniques that should help with a number of
 approaches.
•BigData Hints for Newbies
 <http://goo.gl/aPj4az>

Big Data – How Big is Big?

http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html
http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html

Integer Byte Sizes

Data Types

 Alphanumeric Strings
“the rain in spain is green”

 Integers
12, 4, 126987, -4432, 2014, 0

 Floats
-234.2987, 3.633E17, 5.51e-5

 Booleans
1, 0, T, F,

 Vectors of above

Processing BigData

 Files (HDF5, bam/sam) and specialized utilities
(nco/ncview, [Py/Vi]tables, R, Matlab)

 Relational Dbs (SQLite, Postgres, MySQL)
 NoSQLs (MongoDB, CouchDB)
 Binary Dumps (Perl's Data::Dumper, Python's

pickle)
 Non-Storage (pipes, named pipes/FIFOs,

sockets)
 Keep it RAM-resident.

Formal Relational Schema

EMBL String DB Schema

http://string71.embl.de/newstring_download/database.schema.v7.1.pdf

Schematic Schema (Circos)

Querying an RDB with SQL

 Structured Query Language (SQL) is a formal
query language for admin'g RDBs & specifying
relationships across tables.

 Ugly, unintuitive, but very powerful.
 Select statements will be your entry to SQL

Fomal grammar flowchart
of the SELECT clause.

Select Example:

http://www.w3schools.com/sql/default.asp Queries: http://goo.gl/S5L3fE

NoSQL Databases

 A BigData-driven development
 Designed for Scale and Speed over reliability.
 Most designed to shard or distribute ops
 Not really designed for relational operations.
 Many designed for Key:Something mappings
 Many are not ACID (Atomic, Consistent,

Isolated, Durable).
 Many variants now available, many OSS.

http://www.w3schools.com/sql/default.asp
http://goo.gl/S5L3fE

Slicing & Dicing Big Data

 Use format-specific tools. At this scale, cut,
grep, etc don't work so well.

 ncview, nco, for netCDF
 h5py, pytables, vitables, R, hdfview, for HDF
 well-documented APIs for most

languages; even specific books.
 Writing and reading such formats

 is not as hard as it might appear.
 These formats are just data

 containers, much like ASCII files.

http://en.wikipedia.org/wiki/Shard_(database_architecture)
http://en.wikipedia.org/wiki/NoSQL

HDF5 Internal Structure

● Datasets: arrays of homogeneous types – int's,
 floating points, strings, bools.

● Groups: collections of 'Datasets' or other
'Groups', leading to the ability to store data in a
hierarchical, directory-like structure, hence the
name.

● Attributes: Metadata about the Datasets, which
can be attached to the data. Internal or external.
(as with XDF or SDCubes).

HDF5 file format

http://docs.h5py.org/en/2.3/quick.html
http://www.pytables.org/moin
http://moo.nac.uci.edu/~hjm/AnRCheatsheet.html#hdf5

HDF5 visualizers

 hdfview and ncview can visualize the layout and data of HDF5 & netCDF files
HDF5 used as primary storage for PacBio data

R can read HDF5 files with h5r and pbh5

Relational vs Hierarchical

● HDF5 (& similar formats) are designed to allow
large amounts of numerical data to be read and
written (and re-written).

● Relational Databases are designed to answer
relational queries and allow small, fast data
inserts and modifications.

● These 2 approaches are quite different
● Be careful which approach you take.

Optimization

● To process BigData, you need efficient code.
● To find inefficient code, you profile it.

● 'time' vs '/usr/bin/time -v'
● gross overview of how long it tool

● Oprofile
● Easily gives you per-function time sinks

● HPCToolkit
● Per-line time & hardware counter execs

http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html#hdfview

BigData needs Parallelism (//)

● The bigger the data, the more you need //ism.
● Easy: what's given to you on the cluster.

● // filesystem.
● Pretty Easy: Splitting your analysis & data into
independent streams & chunks.
● Using SGE, Job Arrays, // functions, and all the
spare cores on the cluster.

● Damn Hard: Writing your own programs to do
analysis in //, using OpenMP, MPI, CUDA,
OpenCL, Julia

Embarrassingly Parallel (EP)

● Where the analysis of any chunk of data is
independent of the analysis of any other chunk.

● Break the data into equal sized pieces and
spread them out over all the CPUs you can.

● aka Single Process, Multiple Data (SPMD)
● more loosely: Scatter/Gather
● What GPUs are REALLY good at.

Hadoop / MapReduce

● Special cases where you have EP jobs and lots
of cores to throw at it.

● Hadoop is actually the underlying parallel FS
● Not a general-purpose FS; not POSIX (and
HPC already has a // FS).

● MapReduce (~Producer / Consumer model)
● Map decomposes the data into required form.
● Reduce does the analysis.

Map(Shuffle)Reduce

● Map: Each worker node applies the "map()" function
to the local data, writes the output to a temporary
storage (HDFS). A master node orchestrates that for
redundant copies of input data, only one is processed.

● Shuffle: Worker nodes redistribute data based on
the output keys (produced by the "map()" function),
such that all data belonging to one key is located on
the same worker node.

● Reduce: Worker nodes now process each group of
output data, per key, in parallel.

Hadoop improvements

● Spark – more sophisticated, in-memory analytics
engine (replaces MapReduce)

● Hive – Data warehouse built on top of HadoopFS
● Shark – Spark on Hive
● Pig – Language (PigLatin) for automating the

production of MapReduce programs – sort of an SQL
for MR pipelines.

Many of these technologies require Hadoop-ish
semantics, but HPC already has a fast // FS and
Hadoop can be emulated on top of the exiting FS.

BigData, not ForeverData

 HPC is not backed-up.

 Cannot tolerate old, unused BigData.

 RobinHood is looking for your old BigData.

 Please help us by doing your own data triage.

 Ask your PIs to bug our boss to provide more
resources so we can provide more resources.

Visualizing BigData

 Lots of points means special apps for visualizing
them.

 Visualization techniques for mapping variables onto
color, texture, symbol types and sizes, transparency,
vectors, time series, maps, interactivity

 Wunderground, gapminder, Circos, gephi

http://www.wunderground.com/
http://www.gapminder.org/
http://circos.ca/

Circos visualizations

Gephi Visualizations

Visualization Apps

● Simple Data Visualization
 <http://goo.gl/TNJv8h>

● Multivariate Data Visualization
 <http://goo.gl/32AXAO>

● Roll your own with
 <https://processing.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Computing Philosophy
	Slide 10
	Getting Help
	How to Ask Questions
	Bad Question
	Good Question
	On to HPC
	Slide 16
	What is a Cluster?
	HPC @ UCI in Detail
	Overview
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	What HPC is NOT
	Slide 25
	DATA IS NOT BACKED UP
	HPC FileSystem Layout
	Disk Space / Quotes / Policies
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Big Data – How Big is Big?
	Slide 41
	Slide 42
	Slide 43
	Inodes and ZOT Files
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	[De]Compression
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Move BigData
	Slide 64
	Slide 65
	Checksums
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Big Data
	Slide 74
	Integer Byte Sizes
	Editing Big Data
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Processing BigData
	Slide 82
	Slide 83
	Slide 84
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Big, but not forever
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

