UNIVERSITY of CALIFORNIA - IRVINE

BigData on Linux

Linux: Harry Mangalam harry.mangalam@uci.edu

HPC Emails

- Always cc: <hpc-support@uci.edu>
- Joseph Farran <jfarran@uci.edu>
- Harry Mangalam <hmangala@uci.edu>
- Garr Updegraff <garru@uci.edu>
- Adam Brenner <aebrenne@uci.edu>
- Edward Xia <xias@uci.edu>

http://goo.gl/yPS6WK

Intentions

- Not a HOWTO on specific BigData techniques
- Introduction of how to think about large-scale computing.
- What I wish someone had told me when I was starting out with Unix/Linux.
- I am not a CS guy so a few of my explanations may be formally wrong.
- But mostly I'm right, or right enough.
- Remember...

Good Judgement comes from Experience Experience comes from Bad Judgement

- You are now familiar with Linux and at least a little familiar with cluster computing.
- You're bright: can Google, and read further by yourself.
- If I speak too fast; let me know
- Questions, ASK THEM, but I may not answer them immediately. – "You don't know what you don't know"

Some of you...

- Writing your own apps
- Starting with interpreted languages
- Maybe moving to compiled languages
- Trying to parallelize your work (trivial or sophisticated approaches).

This involves BEING a programmer.

All of you..

- Cleansing your data (bash, utilities)
- Writing qsub scripts \rightarrow SGE
- Running pre-written apps with your data
- Pushing large amounts of data thru HPC
- Developing your own workflows to do this

All these tasks require THINKING like a programmer.

Computing Philosophy

Unlike your Science...

- Be lazy.
- Copy others.
- Don't invent anything you don't have to.
- Re-USE, re-CYCLE, DON'T re-invent.
- Do the easy stuff first.
- Don't be afraid to ask others.
- Try it, but try it small at first.
- Resort to new code only when absolutely necessary.
- Optimize only as a last resort.

Linux & the HPC Cluster

Introduction to Linux on the HPC Cluster

- Linux
- Bash shell & variables
- Commands
- Pipes
- The HPC cluster
- Distributed file systems

Getting Help

- Fix IT Yourself with Google <goo.gl/05MnTi>
- Listservs, forums, IRCs are VERY useful for more involved questions
- The HPC Doc list: <http://hpc.oit.uci.edu/>
- HPC HOWTO <http://goo.gl/kzlql>
- Us Adam, Harry, Garr, Joseph.
- BUT!! Please ask questions intelligently.

How to Ask Questions

- Reverse the situation: if you were answering the question, what information would you need?
- Not Science, but it is Logic.
- Include enough info to recreate the problem.
- Exclude what's not helpful or ginormous (use <pastie.org> or <tny.cz>)
- Use text, not screenshots if possible.

Why doesn't "X" work?

Good Question

I tried running the new podunk/2.8.3 module this morning and it looks like I can't get it to launch on the Free64 queue. My output files aren't helping me figure out what is wrong.

I am working out of /bio/joeuser/RNA_Seq_Data/ and the qsub script is 'job12.sh'. The output should be in

/bio/joeuser/RNA_Seq_Data/output

When I submit the job, it appears to go thru the scheduler but then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the Error messages suggest that there's a problem finding libgorp.so.3

HELP US HELP YOU

We need this information:

- the directory in which you're working (pwd),
- the machine you're working on (hostname)
- modules loaded (module list)
- computer / OS you're connecting from
- the command you used and the error it caused (in /text/, not screenshot)
- much of this info is shown by your prompt

Wed Nov 05 21:24:48 [0.91 1.04 1.08] hjm@stunted:~/nacs/bigdata 517 \$

What is the H_{igh} $P_{erformance}$ $C_{omputing}$ Cluster?

and...

Why do I need HPC?

What is a Cluster?

- bunch of big general purpose computers
- running the *Linux* Operating System
- linked by some form of networking
- have access to networked storage
- that can work in concert to address large problems
- by scheduling jobs very efficiently

HPC @ UCI in Detail

- ~5500 64b Cores Mostly AMD, few Intel
- 4+ Nvidia Tesla GPUs (2880 cores each)
- ~14TB aggregate RAM
- ~1PB of storage (1000x slower than RAM)
- Control network = 1Gb ethernet (100MB/s)
- Data network = QDR IB (5GB/s)
- Grid Engine Scheduler to handle Queues
- > 650 users, 100+ are online at anytime

A hard disk

Storage Server

Rear View

Applications on HPC

- We use the 'module system' to set up environments for specific applications, libraries, and compilers.
- module purge
- module avail *prefix*
- module list
- module whatis *name*
- module load name/version
- Rec NOT preloading a lot of modules.

What HPC is NOT

- NOT your personal machine
- What you do on your machine affects YOU
- What you do on HPC affects the 1000s of other jobs running
- Think before you hit Enter.

What HPC is also NOT

NOT BACKED UP

WHAT. SO. EVER.

DATA IS NOT BACKED UP

- Agitate to your PIs to get us more \$ if you want this.
- Most data is stored on RAID6
- BUT! Any of that can disappear at any moment
- IF ITS VALUABLE, back it up elsewhere --or the code that generated it.

University of California ${\scriptstyle \bullet}$ Irvine

HPC FileSystem Layout

Orange – Cluster Wide

Black – Node Specific

/			
	data/	NFS Mount	
	—apps	All Programs are installed here	
	-users	Users home directory	– 50GB LIMIT PER USER
	w1/	Public NFS Server \rightarrow Going away	– 14TB Space
	w2/	Public NFS Server \rightarrow Going away	– 40TB Space
•	pub/	Replacement for /w1, /w2	
	— bio/	Space for BIO group \rightarrow /dfs1	
•	som/	Space for SOM group \rightarrow /dfs1	
	cbcl/	Space for CBCL group \rightarrow /dfs1	
	dfs1/	Fraunhofer FileSystem – new, Distributed File System	~380TB Space
	└── scratch	Node-specific temporary storage per job (faster than all above)	~1TB – 14TB of Space
	fast-scratch	High Speed Fraunhofer FileSystem for temporary storage	- 13TB
•	ssd-scratch	Very High IOPS for DB, other jobs.	
•	└── /tmp	Same as scratch	

Disk Space / Quotes / Policies

- You can only have so much space
- 50GB for /data/ (\$HOME directory)
- 1yr or older without use please remove from cluster
- More for Condo owners or Groups who have bought extra disk space.
- Regardless, NO DATA IS BACKED UP

University of California ${\scriptstyle \bullet}$ Irvine

SGE and qsub scripts

- SGE / GE is the HPC scheduler
- A complex app that matches resource requests with the cluster resources.
- Resources are:
 - # of CPU cores
 - -RAM
 - Special hardware (GPUs)

- There are 3 main types of Qs
 - Free*: open to everyone
 - Group: open to the group
 - Owner: Open to the owner/lab
- To see what Qs you can submit to:
 'q'

SGE Utilities

- qstat: list the status of ALL the jobs
 - qstat -u <you> more useful
- qdel: delete your jobs
 - qdel -u <you> deletes ALL your jobs
 - qdel <GEJobID> (not PID)
 - qdel -f <GEJobID> force-kills the job
- **qsub job.sh** submits 'job.sh' to scheduler

qsub

- qsub script is just a bash script with some special SGE directives.
- Bash comments prefixed with '#'
- SGE directives prefixed with '#\$'
 - To reserve CPUs, RAM,
 - particular CPU-loading
 - Checkpointing
 - Set up job arrays
- Job arrays?

SGE Job types

- The only type of job that can't be run via the scheduler is one that requires human intervention.
- Serial jobs
- Parallel jobs faster! Or not?
- Job Arrays
- Checkpointing

Example qsub jobs

- Sleeper <http://goo.gl/EsGOgD>
- Generic qsub with lots of comments <http://goo.gl/qfqieL>
- Job that uses /scratch <http://goo.gl/6uY1hh>
- Array Job <http://goo.gl/rwurvX>
- Python qsub script generator <http://goo.gl/olya1E>

And some warnings:

- qsub scripts are bash scripts with some GE directives; if they don't run in your bash shell, they won't run under GE.
- Run them with small sets of data until you know their behavior and how many resources they'll use.
- Once they run fine from the shell, submit them to GE with small sets of data.
- Then submit the full data set.
- And use mail carefully. (No Array jobs!)

Questions?

Preferences?

Specific Techniques?

Some follow-ups...

- MacOSX, hilite file and $[cmd+i] \rightarrow full path$
- rsync beware of '--delete' and if you're going to use it, use '-n' 1st
- Problem of 2 login nodes use 'byobu'
- Identifying & Stopping processes.
- <u>Permissions, chmod</u>, and #!shebang
- Environment variables
- ~/.bashrc, aliases, <u>DirB</u>
- sshfs and where it makes sense to use it

Some more follow-ups...

- How to set up ssh keys .
- IO Redirection
- The grep family

Before BigData, How to think about Data in general

Data as a 747

Think of your data as an airplane

- Takes huge energy & time to get off the ground
- Once in flight, keep it in flight.
- Every time it lands, takes a lot of time to get it flying again.

Time of Byte Flights

Path / Timing of bytes thru the cluster

- CPU Registers: 1x10⁻¹⁰ sec
- 1° cache: $10-50 \times 10^{-10}$ sec
- 2° cache: 100-500x10⁻¹⁰ sec
- Main RAM: 1-10x10⁻⁹ sec
- Network: 10x10⁻⁶ sec
- Flash Memory: 200x10⁻⁶ sec
- Disk: 5x10⁻³ sec

University of California ${\scriptstyle \bullet}$ Irvine

Data Latency

Data Latency Analogy

If Memory = Minute Network = Weeks Flash = Months Disk = Decades

Inodes and ZOT Files

- Inodes contain the metadata for files and dirs
- Inodes are pointers to the data
- Regardless of size, a file needs at least one inode to locate it.
- A file of 1 byte takes up the same minimum inode count as a file of 1TB
- DO NOT USE ZOTFILES!! Zillions of Tiny Files

How not to write ZOTfiles

- Append to a single file (100s of processes across many nodes can write to a single file via file-locking. See http://goo.gl/EOf4qW>.
- Write to a Relational Database.
- Write continuously to custom Binary format.
- Write to a language-specific DATADUMP format.
- Write to a well-documented data format such as HDF5, FITS, netCDF, etc.

Processing Data on Linux

- The bash language is mostly awful.
- The redirection operators (<,>,|,>>,&>,2>, tee) are awesome, incredibly powerful, and often aggravating.
- bg, fg, jobs, scheduler, and cluster computing are incredible powerful. Learn to use them.
- free Linux utilities allow stream-oriented data parsing, cleansing, slicing, and dicing.

Unix Philosophy

- Even longer than Linux, there is a long legacy of free, Open Source tools.
- Typically do a few things but do them well & fast. Input ← STDIN, Errors → STDERR, Output → STDOUT.
- Lots of these tools, developed over 50 yrs of various shells, OS variants, languages.
- The interface tends not to change very much, so learn it once and know it forever.

University of California ${\scriptstyle \bullet}$ Irvine

Excel (gacckkkk) files

- A lot of data is still in Excel files, so..
- Learn how to use it on Linux.
- Via LibreOffice (similar to MS Office)
- Or extract the data and process in pipelines
- With the native app.
- Or via cmdline utilities.

Excel data extraction

Some interchange utilities:

- Tika interconverts many, many formats. Needs: alias tika="java -jar /data/hpc/bin/tika-app-1.6.jar"
- antiword, xls2csv, pdftotext
- The output of these utilities usually need further cleaning with other utilities.
- It never ends...

If you must write ASCII..

- Write delimited, tabular data so it can be parsed more easily.
- Don't replicate data pointlessly.
- Write into large buffers 1st, then write to files in large chunks.
- Truncate floating point values to useful accuracy (23.47063848577682764101945 → 23.47)
 26 bytes vs 5 bytes for no extra value
- Don't confuse high precision with high accuracy.

The line eater: Perl

while (<>) { \$N = @values = split(/token/); # some kind of eval }

The line eater: Python

import sys
for line in sys.stdin:
 values = data.split('token');

Slicing & Dicing ASCII data

- ASCII will be your 1^{st} exp with data on Linux
- ...and before any analysis: Data Cleansing
- Select rows: grep based on a regex
- Select columns: cols, cut/scut
- Often have to merge files
 - Needle and haystack problem (relational join): join, <u>scut</u>
 - Bulk merge: cat, paste, diff, comm, pr

Binary Data

- All data is binary, but...
- Binary storage is a special case of data representation.
- Data is stored as the byte-wise representation of the data, not character-wise
- ie: '123' could be be stored in 1 byte, not 3.
- 9814.98 floating point representation.
 - single precision FP (32b \rightarrow 4bytes)
 - double precision FP (64b \rightarrow 8bytes)
 - And even higher (128b)

More Binary Data

- In binary, values are stored without separation tokens so numbers are packed more efficiently as well.
- Some data formats allow specification of the precision of the value so they can use the most efficient representation of the number.

Compression

- Compression saves disk space and network bandwidth and speed.
- It costs CPU time to both compress and decompress, but compression is much more costly.
- Lossy vs Lossless compression. (JPEG vs gzip)
- ASCII text can be compressed ~ 2-3X
- XML can be compressed ~ 20X
- Random data doesn't compress well at all.

\$ ls -l urandom.1G.gz
-rw-r--r-- 1 hjm hjm 1000162044 Nov 14 12:03 urandom.1G.gz

So compressing *nearly random data* actually results in *INCREASING* the file size.

Compressing pure repetitive data from the '/dev/zero' device:

So in much less time (7s vs 34s), we get a 1000X compression.

But wait, there's more!

```
What about bzip2?
It does a much better job:
$ ls -l zeros.1G
-rw-r--r-- 1 hjm hjm 1000000000 Nov 14 11:31 zeros.1G
====
$ time bzip2 zeros.1G
real 0m10.106s
====
$ ls -l zeros.1G.bz2
-rw-r--r-- 1 hjm hjm 722 Nov 14 11:32 zeros.1G.bz2
```

Or, about 1.3MillionX compression (about the same as you get if you compress Electronic Dance Music)

More Compression

- Many utilities will enable in-line compression.
- This is fine for small transfers, but for large transfers, it's often better to archive and then use parallel compression.
- pigz parallel form of gzip
- pbzip2 parallel form of bzip2
- Both are almost perfectly parallel.

[De]Compression

- If your applications can deal with compressed data, KEEP IT COMPRESSED. Many popular apps (esp bioinfo) now allow this.
- If they can't, try to use pipes (|) to decompress in memory and feed the decompressed stream to the app.
- Use native utilities to examine the compressed data (zcat/unzip/gunzip, grep, archivemount, vitables, ncview, etc.

Moving BigData

- 1st: Don't.
- Otherwise, plan where your data will live for the life of the analysis, have it land there, and don't move it across filesystems.
- Don't DUPLICATE DUPLICATE DUPLICATE BigData
- See: <http://goo.gl/2iaHqD>
- rsync for modified data
- bbcp for new transfers of large single files, regardless of network
- tar/netcat for deep/large dir structures over LANs
- tar/gzip/bbcp to copy deep/large dir structures over WANs

rsync

- If you only want to use one tool, it's rsync.
- rsync -av /from/here /to/there
- Can encrypt and compress data (but don't try to compress already compressed data)
- Specialized variants for multi-TB data.

bbcp

- If you only want to use 2 tools, the 2nd one is bbcp.
- Used almost like rsync.
- But is much worse for doing recursive copies
- Especially with lots of small files.
- Will compress, but does NOT encrypt data.

```
$ bbcp bigfile user@host:/high/perf/raid/file
# can get about 50-60MB/s over 1GbE
```

```
bbcp -P 10 -w 2M -s 10 bigfile \
user@host:/high/perf/raid/file
# this can get us 80-110MB/s over 1GbE.
```


- Represent the identity of a file. If one **bit** changes, the checksum changes.
- md5sum / jacksum
- Use MANIFEST files & copy them along with the data files.
- See <u>checksum example.</u>
- Integrate checksums as part of your <u>qsub scripts</u>

Timing and profiling

- Only applies to writing your own code, but it's good to start thinking about this early.
- top, atop, free, htop, pstree
- 'time', '/usr/bin/time'
- oprofile, perf, HPCToolkit, valgrind

htop

1 2 3 4 Mem Swp			0.5% 0.9% 0.0% 0.0%	6 6 6 7		22510/2 93	0.0 0.0 0.0 58312M)%])%])%] IB]	9 [0.0%] 13 [0.5%] 10 [1.4%] 14 [0.0%] 11 [0.0%] 15 [0.0%] 12 [0.0%] 16 [0.0%] Tasks: 377, 323 thr; 1 running Load average: 0.10 0.09 0.03 Uptime: 43 days, 06:52:31
	USER	PRI	NI	VIRT	RES		CPU%		TIME+ Command
	root	20		19364	1504	1212 S		0.0	0:39.50 /sbin/init
	crackauc	20		57716	452	396 S		0.0	0:00.00 `- ssh-agent -s
31810		20	0	127M	4524	2272 S		0.0	0:02.39 `- /usr/libexec/gconfd-2
31808		20		19732	848	620 S		0.0	0:00.00 `- /bin/dbus-daemonforkprint-pid 5pr
31807		20		18148	784	544 S		0.0	0:00.00 - dbus-launchautolaunch 7b544a5b335191c2b
31658		20	0	105M	1504	1252 S		0.0	0:00.00 - /bin/bash /usr/bin/x2goruncommand 157 3103
31803		20	0	261M	13412	9924 S		0.0	5:35.11 `- /usr/bin/gnome-terminal
31813		20	0		13412	9924 S		0.0	0:00.00 _ `- /usr/bin/gnome-terminal
31812	yuw2	20	0	106M	1972	1504 S		0.0	0:00.02 `- bash
31811	yuw2	20	0	6548	588	484 S	0.0	0.0	0:00.00 `- gnome-pty-helper
31139	ataffard	20	0	287M	14488	10356 S	0.0	0.0	0:30.57 `- gnome-terminal
31142	ataffard	20	0	287M	14488	10356 S	0.0	0.0	0:00.00 `- gnome-terminal
31141	ataffard	20	0	105M	1900	1500 S		0.0	0:00.01 `- bash
31140	ataffard	20	0	6548	592	488 S	0.0	0.0	0:00.00 `- gnome-pty-helper
31038	yuw2	20	0	140M	70108	5348 S	0.0	0.0	2:30.45 `- nxagent.bin -extension XFIXES -nolisten to
30896	ataffard	20	0	521M	16528	12568 S	0.0	0.0	0:22.62 `- /usr/libexec/clock-appletoaf-activate-i
	ataffard	20	0		10020	7924 S		0.0	0:06.66 `- /usr/libexec/notification-area-appletoa
	ataffard	20		39004	2644	2228 S		0.0	0:00.00 `- /usr/libexec/gconf-im-settings-daemon
	ataffard	20	0	67784	3092	2364 S		0.0	0:03.39 `/escdkey_Inserted="/usr/bin/esc"on_
	ataffard	20	0	110M	4760	3948 S		0.0	0:00.01 `- /usr/libexec/im-settings-daemon
	ataffard	20	0	140M	3252	2608 S		0.0	0:02.16 `- /usr/libexec/gvfsd-trashspawner :1.7 /o
I	ataffard	20	0	142M	<u>3320</u>	<u>268</u> 8 S		0.0	<u>0</u> :0 <u>0.28</u> - <u>/usr/l</u> ibe <u>xec/gvfs-gdu-volume-monitor</u>
F1Help									e - <mark>F8</mark> Nice + <mark>F9</mark> Kill <mark>F10</mark> Quit
0-\$ 00-	1*\$ new1 bian 7.6	2\$ b	ash	3\$ c1	law4 4	4\$ calw5	5@!s ^78	b claw cb v26	v7 6\$ bduc

		\$ free				
	total	used	free	shared	buffers	cached
Mem:	252	244	7	0	0	222
Low:	252	244	7			
High:	Θ	Θ	Θ			
<pre>-/+ buffers/cache:</pre>		21	230			
Swap:	4	0	4			

time (bash built-in)

\$ time ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out

- real 0m10.599s
- user 0m10.456s
- sys 0m0.145s

/usr/bin/time

\$ /usr/bin/time ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out

10.47user 0.14system 0:10.60elapsed 100%CPU
(0avgtext+0avgdata 867984maxresident)k
0inputs+7856outputs (0major+33427minor)pagefaults 0swaps

oprofile

\$ operf ./tacg -n6 -S -o5 -s < hg19/chr1.fa > out
operf: Profiler started

\$ opreport --exclude-dependent --demangle=smart --symbols ./tacg Using /home/hjm/tacg/oprofile_data/samples/ for samples directory. CPU: Intel Ivy Bridge microarchitecture, speed 2.501e+06 MHz

samples	0/0	symbol name
132803	43.1487	Cutting
86752	28.1864	GetSequence2
49743	16.1619	basic_getseq
9098	2.9560	Degen_Calc
7522	2.4440	fp_get_line
7377	2.3968	HorribleAccounting
6560	2.1314	abscompare
4287	1.3929	Degen_Cmp
2600	0.8448	main
704	0.2287	basic_read
212	0.0689	BitArray
112	0.0364	PrintSitesFrags
3	9.7e-04	ReadEnz
3	9.7e-04	hash.constprop.2
2	6.5e-04	hash
1	3.2e-04	Read_NCBI_Codon_Data
1	3.2e-04	palindrome

Big Data

- Volume
 - Scary sizes, and getting bigger
- Velocity
 - Special approaches to speed up analysis
- Variety
 - Domain-specific standards (HDF5/netCDF, bam/sam, FITS), but often aggregations of unstructured data
- No one-technique-fits-all, but will present general techniques that should help with a number of approaches.
- •BigData Hints for Newbies <http://goo.gl/aPj4az>

Big Data – How Big is Big?

# Bytes	Byte name / Abbriev'n	Approximation				
1/8	bit (b)	0 or 1: the smallest amount of information.				
1	Byte (B)	8 bits, the smallest chunk normally represented in a programming language.				
2 ¹⁰	1,024 B (1 KB)	a short email is a few KBs				
2 ²⁰	1,048,576 B (1 MB)	a PhD Thesis ; Human Chr 1 is ~250 MB				
2 ³⁰	1,073,741,824 B (1 GB)	the Human Genome is 3,095,693,981 B (optimized, ~780 Mb @ 2b/base); a BluRay DVD holds 25GB per layer (most movie BluRays are dual-layer = 50GB); a Genomic bam file is ~150GB				
2 ³²	4,294,967,296 (4GB)	fuzzy border between SmallData (32b) and BigData (64b)				
2 ⁴⁰	1,099,511,627,776 B (1 TB)	1/10th Library of Congress (LoC); the primary data fr. an Illumina HiSeq2K is ~5 TB				
2 ⁵⁰	1,125,899,906,842,624 B (1 PB)	100X LoC; ~HPC's aggregate storage; ~100 PB is the yearly storage requirements of YouTube.				
2 ⁶⁰	1,152,921,504,606,846,976 B (1 EB)	the est. capacity of the NSA's data facility is ~12 EB				

University of California - Irvine

Integer Byte Sizes

word size	#bits	range of variable			
byte or char	8	256			
int	16	65,536			
long int	32	4,294,967,296			
long long int	64	1.84467440737e+19			

University of California ${\scriptstyle \bullet}$ Irvine

Data Types

- Alphanumeric Strings "the rain in spain is green"
- Integers
 12, 4, 126987, -4432, 2014, 0
- Floats
 -234.2987, 3.633E17, 5.51e-5
- Booleans 1, 0, T, F,
- Vectors of above

University of California ${\scriptstyle \bullet}$ Irvine

Processing BigData

- Files (HDF5, bam/sam) and specialized utilities (nco/ncview, [Py/Vi]tables, R, Matlab)
- Relational Dbs (SQLite, Postgres, MySQL)
- NoSQLs (MongoDB, CouchDB)
- Binary Dumps (Perl's Data::Dumper, Python's pickle)
- Non-Storage (pipes, named pipes/FIFOs, sockets)
- Keep it RAM-resident.

Formal Relational Schema

EMBL String DB Schema

http://string71.embl.de/newstring_download/database.schema.v7.1.pdf

University of California - Irvine

Schematic Schema (Circos)

Querying an RDB with SQL

- Structured Query Language (SQL) is a formal query language for admin'g RDBs & specifying relationships across tables.
- Ugly, unintuitive, but very powerful.
- Select statements will be your entry to SQL

Fomal grammar flowchart of the SELECT clause.

Select Example:

SQL Statement: Edit the SQL Statement, and click "Run SQL" to see the result.						Your Database: 🔹 🕐			
SELECT * ERO	SELECT * FROM Customers;							Tablename	Records
SELECT THE	SELECT * FROM Customers,							<u>Customers</u>	91
								<u>Categories</u>	8
								<u>Employees</u>	10
								<u>OrderDetails</u>	518
								<u>Orders</u>	196
Run SQL »								Products	77
								Shippers	3
Result:								Suppliers	29
Number of Red	Number of Records: 91							Restore	Database
CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country			
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany			
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico			
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico			
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK			
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden			
6	Blauer See Delikatessen	Hanna Moos	Forsterstr. 57	Mannheim	68306	Germany			
7	Blondel père et fils	Frédérique Citeaux	24, place Kléber	Strasbourg	67000	France			
8	Bólido Comidas	Martín Sommer	C/ Araquil 67	Madrid	28023	Spain			

http://www.w3schools.com/sql/default.asp

Queries: http://goo.gl/S5L3fE UNIVERSITY of CALIFORNIA • IRVINE

NoSQL Databases

- A BigData-driven development
- Designed for **Scale and Speed** over reliability.
- Most designed to <u>shard</u> or distribute ops
- Not really designed for relational operations.
- Many designed for <u>Key:Something</u> mappings
- Many are not ACID (Atomic, Consistent, Isolated, Durable).
- Many variants now available, many OSS.

Slicing & Dicing Big Data

- Use format-specific tools. At this scale, *cut, grep*, etc don't work so well.
- ncview, nco, for netCDF
- <u>h5py</u>, <u>pytables</u>, vitables, <u>R</u>, hdfview, for HDF
- well-documented APIs for most languages; even specific books.
- Writing and reading such formats is not as hard as it might appear.
- These formats are just data containers, much like ASCII files.

Andrew Collette

HDF5 Internal Structure

- **Datasets:** arrays of homogeneous types int's, floating points, strings, bools.
- **Groups:** collections of 'Datasets' or other 'Groups', leading to the ability to store data in a hierarchical, directory-like structure, hence the name.
- Attributes: Metadata about the Datasets, which can be attached to the data. Internal or external. (as with XDF or SDCubes).

HDF5 file format

University of California - Irvine

HDF5 visualizers

hdfview and ncview can visualize the layout and data of HDF5 & netCDF files HDF5 used as primary storage for PacBio data

R can read HDF5 files with *h5r* and *pbh5*

Relational vs Hierarchical

- HDF5 (& similar formats) are designed to allow large amounts of numerical data to be read and written (and re-written).
- Relational Databases are designed to answer relational queries and allow small, fast data inserts and modifications.
- These 2 approaches are quite different
- Be careful which approach you take.

Optimization

- To process BigData, you need efficient code.
- To find inefficient code, you profile it.
- •'time' vs '/usr/bin/time -v'
 - gross overview of how long it tool
- Oprofile
 - Easily gives you per-function time sinks
- HPCToolkit
 - Per-line time & hardware counter execs

BigData needs Parallelism (//)

- The bigger the data, the more you need //ism.
- Easy: what's given to you on the cluster.
 - // filesystem.
- **Pretty Easy:** Splitting your analysis & data into independent streams & chunks.
 - Using SGE, Job Arrays, // functions, and all the spare cores on the cluster.
- Damn Hard: Writing your own programs to do analysis in //, using OpenMP, MPI, CUDA, OpenCL, Julia

University of California ${\scriptstyle \bullet}$ Irvine

Embarrassingly Parallel (EP)

- Where the analysis of any chunk of data is independent of the analysis of any other chunk.
- Break the data into equal sized pieces and spread them out over all the CPUs you can.
- aka Single Process, Multiple Data (SPMD)
- more loosely: Scatter/Gather
- What GPUs are REALLY good at.

Hadoop / MapReduce

- Special cases where you have EP jobs and lots of cores to throw at it.
- Hadoop is actually the underlying parallel FS
 - Not a general-purpose FS; not POSIX (and HPC already has a // FS).
 - MapReduce (~Producer / Consumer model)
 - Map decomposes the data into required form.
 - Reduce does the analysis.

Map(Shuffle)Reduce

- **Map:** Each worker node applies the "map()" function to the local data, writes the output to a temporary storage (HDFS). A master node orchestrates that for redundant copies of input data, only one is processed.
- **Shuffle:** Worker nodes redistribute data based on the output keys (produced by the "map()" function), such that all data belonging to one key is located on the same worker node.
- **Reduce**: Worker nodes now process each group of output data, per key, in parallel.

Hadoop improvements

- Spark more sophisticated, in-memory analytics engine (replaces MapReduce)
- Hive Data warehouse built on top of HadoopFS
- Shark Spark on Hive
- Pig Language (PigLatin) for automating the production of MapReduce programs – sort of an SQL for MR pipelines.

Many of these technologies require Hadoop-ish semantics, but HPC already has a fast // FS and Hadoop can be emulated on top of the exiting FS.

BigData, not ForeverData

- HPC is not backed-up.
- Cannot tolerate old, unused BigData.
- RobinHood is looking for your old BigData.
- Please help us by doing your own data triage.
- Ask your PIs to bug our boss to provide more resources so we can provide more resources.

Visualizing BigData

- Lots of points means special apps for visualizing them.
- Visualization techniques for mapping variables onto color, texture, symbol types and sizes, transparency, vectors, time series, maps, interactivity
- Wunderground, gapminder, Circos, gephi

10-Day Weather Forecast

Circos visualizations

CIRCOS MAPS AMERICA'S RESTLESS INTERSTATE MIGRATION WITHOUT A MAP

Wired has a <u>writeup about migration patterns within the US</u> that shows the data using d3.js <u>chord diagrams</u>, modeled after how <u>Circos</u> <u>shows tabular data</u>.

Gephi Visualizations

Visualization Apps

• Simple Data Visualization

<http://goo.gl/TNJv8h>

- Multivariate Data Visualization ">http://goo.gl/32AXAO>
- Roll your own with https://processing.org>