Linux on the HPC Cluster

Harry Mangalam

harry.mangalam@uci.edu
Before We Begin

• You know Linux (..?)
• You're bright: can Google, and read further by yourself.
• If I speak too fast; let me know
• Questions, **ASK THEM**, but I may not answer them immediately. — “You don’t know what you don’t know”
Computing Philosophy

- Unlike your Science...
- Be lazy.
- Copy others.
- Don't invent anything you don't have to.
- Re-USE, re-CYCLE, DON'T re-invent.
- Don't be afraid to ask others.
- Resort to new code only when absolutely necessary.
- Add comments to your code - ALWAYS
Philosophy – Take Away

• You're not CS, not programmers

• Don't try to be them

• But! Try to think like them, at least a bit

• Google is your friend
Getting Help

- Fix IT Yourself with Google <goo.gl/05MnTi>
- Listservs, forums, IRCs are VERY useful for more involved questions
- The HPC HOWTO <goo.gl/kzlql>
- Us – Jenny, Adam, Harry, Garr, Joseph.
- BUT!! Unless you ask questions intelligently, you will get nothing but grief.
How to Ask Questions

• Reverse the situation: if you were answering the question, what information would you need?
• Not Science, but it is Logic.
• Include enough info to recreate the problem.
• Exclude what's not helpful or ginormous (use <pastie.org> or <tny.cz>)
• Use text, not screenshots if possible.
Bad Question

Why doesn’t “X” work?
I tried running the new podunk/2.8.3 module this morning and it looks like I can't get it to launch on the Free64 queue. My output files aren't helping me figure out what is wrong.

I am working out of /bio/joeuser/RNA_Seq_Data/ and the qsub script is 'job12.sh'. The output should be in /bio/joeuser/RNA_Seq_Data/output

When I submit the job, it appears to go thru the scheduler but then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the Error messages suggest that there's a problem finding libgorp.so.3
HELP US HELP YOU

We Need:

- the directory in which you’re working (pwd),
- the machine you’re working on (hostname)
- modules loaded (module list)
- computer / OS you’re connecting from
- the command you used and the error it caused (in /text/, not screenshot)
- much of this info is shown by your prompt

see <http://goo.gl/6eZORd>
On to HPC

What is the High Performance Computing Cluster?

and...

Why do I need HPC?
What is a Cluster?

• bunch of big general purpose computers
• running the Linux Operating System
• linked by some form of networking
• have access to networked storage
• that can work in concert to address large problems
• by scheduling jobs very efficiently
HPC @ UCI in Detail

- ~5800 64b Cores – Mostly AMD, few Intel
- ~14TB aggregate RAM
- ~1PB of storage (1000x slower than RAM)
- Connected by 1Gb ethernet (100MB/s)
- Connected by QDR IB (800MB/s)
- Grid Engine Scheduler to handle Queues
- > 650 users, 100+ are online at anytime
What HPC is NOT

• NOT: your personal machine – shared resource

• **NO DATA IS BACKED UP – WHAT SO EVER**

• Well secured from mischief and disasters – not an invitation
DATA IS NOT BACKED UP

• NO DATA IS BACKED UP – WHAT SO EVER - Agitate to your PIs to get us more $ if you want this.
• Most data is stored on RAID6
• BUT! Any of that can disappear at any moment
• IF ITS VALUABLE, back it up elsewhere --- or the code that generated it.
HPC FileSystem Layout

Orange – Cluster Wide
Black – Node Specific

/
├── data/ NFS Mount
│ │–apps All Programs are installed here
│ │–users Users home directory
│ │ └── bio/ Space for BIO group → /dfs1
│ │ └── som/ Space for SOM group → /dfs1
│ │ └── cbcl/ Space for CBCL group → /dfs2
│ │ ├── dfs1/ Fraunhofer FileSystem – new, Distributed File System ~380TB Space
│ │ │ ├── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB of Space
│ │ │ │ └── fast-scratch High Speed Fraunhofer FileSystem for temporary storage - 13TB
│ │ │ │ └── ssd-scratch Very High IOPS for DB, other jobs.
│ │ │ └── /tmp Same as scratch
│ │ └── w1/ Public NFS Server → Going away – 14TB Space
│ │ └── w2/ Public NFS Server → Going away – 40TB Space
│ │ └── pub/ Replacement for /w1, /w2
│ │ └── pub/
│ │ └── bio/ Space for BIO group → /dfs1
│ │ └── som/ Space for SOM group → /dfs1
│ │ └── cbcl/ Space for CBCL group → /dfs2
│ │ ├── dfs1/ Fraunhofer FileSystem – new, Distributed File System ~380TB Space
 │ │ └── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB of Space
 │ │ └── fast-scratch High Speed Fraunhofer FileSystem for temporary storage - 13TB
 │ │ └── ssd-scratch Very High IOPS for DB, other jobs.
 │ │ └── /tmp Same as scratch

Orange – Cluster Wide
Black – Node Specific
You can only have so much space
50GB for /data/ (home directory)
6months or older without use – please remove from cluster
More for Condo owners or Groups who have bought extra disk space.
Regardless, NO DATA IS BACKED UP
Data Sizes

• Your data will be BIG – “BigData”
• BigData is somewhat 'dangerous' due to its bigness.
• Think before you start. You can't predict everything, but you can predict a lot of things – more on this later
How to: Login with SSH

SSH is an encrypted protocol so that info over the connection can't be deciphered by others.

You MUST use SSH to connect to HPC – think command line

Underlies 'scp' (secure copy), sftp

Also 'sshfs' which allows you to attach your filesystem to HPC (or vice versa).
Command Line Cons

• The tyranny of the blank page

• No visual clues

• Type vs click

• Have to know what to type

• HOW DO YOU KNOW WHAT TO TYPE???
Command Line Pros

• It doesn't get much worse than this

• When you do learn it, you'll know it and it probably won't change for the rest of your life

• It's a very efficient way of interacting with the computer (which is why it's survived for 50+yrs).

• You can use it to create simple, but very effective pipelines and workflows.
Keeping SSH Session Alive

- If you need to maintain a live connection for some reason, use 'byobu or screen'.
- It allows you to multiplex and maintain connections in a single terminal window.
- Somewhat unintuitive interface but very powerful.
- You know about cheatsheets (Google!!)
Graphics Apps on HPC

- Linux uses X11 for graphics

- X11 is very chatty, high bandwidth, sensitive to network hops/latency.

- If you need graphics programs on HPC, use x2go vs native X11.

- x2go is described in the Tutorial & HOWTO, also GOOGLE
How to: SSH & The Shell

• Once logged in to HPC via SSH you are now using the Shell, which is..
• A program that intercepts and translates what you type, to tell the computer what to do.
• What you will be interacting with mostly.
• HPC shell is 'bash', altho there are others.
Know the shell, Embrace the Shell

• If you don't get along with the shell, life will be hard.

• Before you submit anything to the cluster via qsub, get it going in your login shell.

• You're welcome to start jobs in on the IO node, type: qrsh

• “DO NOT RUN JOBS ON THE LOGIN NODE”
How to know if I am on Login Node?

• Look at your shell prompt!
• Mon Apr 28 07:08:59 hmangala@hpc-s:~ 678 $

• [aebrenne@hpc ~]$ ← ‘HPC’ is the login node

• [aebrenne@compute-6-1 ~]$ ← On compute 6-1

• May also use the command hostname
• STD = Standard
• STDIN is usually the keyboard, but...
• STDOUT is usually the screen, but...
• STDERR is also usually the screen, but...
• All can be redirected all over the place
to files, to pipes, combined, split (by 'tee'), etc
• recombin[ed] to make simple filters or workflows
Files & Directories

- Files & folders much like on Mac & Win
- Except...
- Names are case-sensitive, 256 char long
- 'Folders' → 'Directories', separated by '/'
- No spaces in names*
- . means 'in this dir'
- .. means parent dir
- ~ means 'home dir'
- A leading '/' means 'from the root dir'
Foreground & Background Jobs

• Foreground (fg) jobs are connected to the terminal. You kill a fg job with ^C.
• Background (bg) jobs have been disconnected from the terminal.
• Send a job to the bg by appending &
• Recall a job to the fg with fg.
• Send a fg job to the bg with '^z' (suspend), then 'bg'.
Pipe

- Works with STDIN/OUT/ERR to create 'pipelines'
- Very similar to plumbing; can add 'tee's to introduce splits
- STDOUT of one program goes to the STDIN of another command whose STDOUT goes to the STDIN of another program ad infinitum.
- Soooooo......
Pipe Example

```
w | cut -f1 -d ' ' | egrep -v "(^$|USER)" | sort | uniq -c | wc
```

- `w` spits out who is on the system right now.
- `cut -f1 -d ' '` chops out the 1st field (the user), based on the space token.
- `egrep -v "(^$|USER)"` filters out both blank lines and lines with 'USER'.
- `sort` sorts the usernames alphabetically.
- `uniq -c` counts the unique lines.
- `wc -l` word-counts that output.

Example: Now on HPC!
Help on Commands

- `cmd -h`
- `cmd -help`
- `man cmd`
- `info cmd` (but you hope not)
- And ….. Google….
Some Useful Commands

- `ls [many options]` = list file
- `cd [up or down]` = change directory
- `find [from] -name [name]` = find files
- `locate [name]` = where is this file?
- `tree [options]` = show the directory tree
- `file [name(s)]` = what is this?
- `du` = disk usage
- `df` = disk free
- `less [names]` = view files
- `cols [file]` = view file in columns
Creative / Destructive Commands

- `mkdir [name]` – make a dir
- `rmdir [name]` – remove a dir
- `mv [from] [to]` = move or rename
- `cp [from] [to]` = copy file(s)
- `rm [file]` = delete file(s)
- `wget [URL]` = get a file from the Internet
- `curl -O [URL]` = ditto, but on steroids
More Useful Commands

- `mc` = Midnight Commander
- `[ah]top` = top CPU-using processes
- `time [command]` = how long does it take?
- `[aef]grep [regex] [files]` = find regex in files
- `cat [files]` = print the files to STDOUT
- `head/tail [files]` = dump the top / bottom of files
Regular Expressions

• Among the most powerful concepts in pattern matching
• Simple in concept, NASTY in implementation
• Among the ugliest / most confusing things to learn well
• But pretty easy to learn the simple parts.
• You will **NEED** to learn it – it's central to computers and especially biology
Regexes

- Simplest form is called globbing: `a*`
- Barely more complicated: `a*.txt`
- A bit more: `a*th.txt`
- Can be MUCH more complex:
 - `[aeiou] = any of 'aeiou'`
 - `F{3,5} = 3-5 'F's`
 - `H+ = 1 or more 'H's`
 - `.` = any character
- Also classes of characters (#s, alphabetic, words)
Archiving / Compression

• tar = std archive format for Linux

• zip = common archive format, from Windows

• gzip/unzip = common compressed format

• bzip2/bunzip2 = another compressed format

• pigz = parallel gzip (for large files)

• pbzip – parallel bzip2 (ditto)
Customize Your Environment

• Change your prompt to something useful to you (and to us):

• PS1="\n\t\u@\h:\w\n\! \$ "
• Set aliases (alias nu="ls -lt |head -22")
• Set Environment Variables (export EDITOR=vim)

• Make these permanent via .bash_profile & .bashrc files in your home directory
Editing Files: simple & complex

• Text-based:
 • nano, joe, vi/vim, emacs

• GUI-based:
 • gedit, nedit, kate, jedit, emacs

(choose one and learn it, well)
Move Data to / from HPC

- Covered in detail in HPC USER HOWTO, which references: goo.gl/XKFEp

- scp, bbcp, netcat/tar on Mac, Linux.

- WinSCP, Filezilla, CyberDuck, FDT on Win

- Everyone should know how to use rsync. Not the easiest to learn, but very powerful & scriptable.

- rsync GUIs for Linux, Windows, MacOSX
Using Software on HPC

• 3 main sets of programs

• Your personal set (typically in ~/bin)

• The default system utilities
cut, grep, ls, mv, cp, rm, cd, etc...

• The module system programs
The Module System

- `module avail` shows all installed software
- `module load R/3.01` loads program R version 3.01 (but doesn't start it)
- `module unload` unloads the specified program
- `module purge` removes all loaded programs
- `module list` lists all the currently loaded ones
How to Find Software

- `locate <partial search term>`
- `apropos <search term>`
- `na<tab><tab> → name`
- `yum search <search term> # CentOS`
- `module avail` (will dump all modules)
- Google
- Ask us.
The Scheduler (GE)

• Just another program that juggles requests for resources
• Make sure a program is working on a small set of test data on an interactive shell.
• Need a short bash script (aka `qsub script`) to tell the GE what your program needs to run.
• Can improve the performance of your program in a variety of ways (staging data, running in parallel, using array jobs, etc)
The Scheduler: qsub vs qrsh

• **qrsh** will log you into an Interactive Node (IO Node) where you can test out your scripts.

• IO Nodes are useful for GUI programs (X11 & x2go needed) or testing / running SMALL and FAST data sets.

• A **qsub** script is just a series of bash commands that sets up your resource requirements, PATHs, executes your jobs, and does the post-processing. – **NO USER INVOLVEMENT** during the process.
GE Useful Commands

- `qstat` - Queue Status
- `queue / q` – What queues you have access to
- `qdel` – Delete/Stop your job
- `qhost` – Show all nodes and their status

Use `man cmd` to find out more information on above commands.

Ref:
- `http://hpc.oit.uci.edu/PHPQstat`
- `http://hpc.oit.uci.edu/running-jobs`
Sample QSUB Script

• Visit:
 • <http://hpc.oit.uci.edu/guides/qsub-biolinux.html>

• Ref:
 • <http://goo.gl/hrcXBg>
GE – Request Node Resources

• Use Case: You know your program requires at least
 • 24GB Memory
 • 16 CPU Cores
• You need to tell the scheduler
 • #$ -pe openmp 16
 • #$ -l mem_free=24G
• This does not make your program run faster or use all cores – you simply reserve this amount
GE – Queues

• As you noticed, the scheduler uses queues to handle your job.

• Some queues have higher priority than others.

• Type `queue` or `q` to see what you have access to

• `#$ -q som, free*`
• The free* queue allows anyone to use CPU cycles when they are not in use on any queue/node cluster wide

• When owners want to use their nodes, free* jobs are suspended

• Similar to the free* queue, the 'all' queue is group-specific: abio, asom, etc.
Big Data

• Volume
• Scary sizes, and getting bigger
• Velocity
• Special approaches to speed analysis
• Variety
• Domain-specific standards (HDF5/netCDF, bam/sam, FITS), but often aggregations of unstructured data

• BigData Hints for Newbies
 <http://goo.gl/aPj4az>
Big Data – How Big is Big?

<table>
<thead>
<tr>
<th># Bytes</th>
<th>Byte name / Abbrev’n</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>bit (b)</td>
<td>0 or 1: the smallest amount of information.</td>
</tr>
<tr>
<td>1</td>
<td>Byte (B)</td>
<td>8 bits, the smallest chunk normally represented in a programming language.</td>
</tr>
<tr>
<td>2^{10}</td>
<td>1,024 B (1 KB)</td>
<td>a short email is a few KBs</td>
</tr>
<tr>
<td>2^{20}</td>
<td>1,048,576 B (1 MB)</td>
<td>a PhD Thesis; Human Chr 1 is ~250 MB</td>
</tr>
<tr>
<td>2^{30}</td>
<td>1,073,741,824 B (1 GB)</td>
<td>the Human Genome is 3,095,693,981 B (optimized, ~780 Mb @ 2b/base); a BluRay DVD holds 25GB per layer (most movie BluRays are dual-layer = 50GB); a Genomic bam file is ~150GB</td>
</tr>
<tr>
<td>2^{32}</td>
<td>4,294,967,296 (4GB)</td>
<td>fuzzy border between SmallData (32b) and BigData (64b)</td>
</tr>
<tr>
<td>2^{40}</td>
<td>1,099,511,627,776 B (1 TB)</td>
<td>1/10th Library of Congress (LoC); the primary data fr. an Illumina HiSeq2K is ~5 TB</td>
</tr>
<tr>
<td>2^{50}</td>
<td>1,125,899,906,842,624 B (1 PB)</td>
<td>100X LoC; ~HPC’s aggregate storage; ~100 PB is the yearly storage requirements of YouTube.</td>
</tr>
<tr>
<td>2^{60}</td>
<td>1,152,921,504,606,846,976 B (1 EB)</td>
<td>the est. capacity of the NSA’s data facility is ~12 EB</td>
</tr>
</tbody>
</table>
Integer Byte Sizes

<table>
<thead>
<tr>
<th>word size</th>
<th>#bits</th>
<th>range of variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte or char</td>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>int</td>
<td>16</td>
<td>65,536</td>
</tr>
<tr>
<td>long int</td>
<td>32</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>long long int</td>
<td>64</td>
<td>1.84467440737e+19</td>
</tr>
</tbody>
</table>
Inodes and ZOT Files

- Inodes contain the metadata for files and dirs
- Inodes are pointers to the data
- Regardless of size, a file needs at least one inode to locate it.
- A file of 1 byte takes up the same minimum inode count as a file of 1TB
- DO NOT USE ZOTFILES!! – Zillions of Tiny Files
Let me demonstrate with a card trick.
Pointless Data Replication

- How informative is this?

vs

- How informative is this? [5x]
- ___LINE___
Editing Big Data

- Use format-specific utilities to view such files and hash values to check if they’re identical to what they should be.

- Try not to be the person who tries to open a 200GB compressed data file with nano/vim/joe/emacs, etc.
[De]Compression

• If your applications can deal with compressed data, KEEP IT COMPRESSED.
• If they can't, try to use pipes (|) to decompress in memory and feed the decompressed stream to the app. Many popular apps now allow this.
• Use native utilities to examine the compressed data (zcat/unzip/gunzip, grep, archivemount, Vitables, ncview, etc.)
Moving BigData

• 1st: Don't.
• Otherwise, plan where your data will live for the life of the analysis, have it land there, and don't move it across filesystems.
• Don't DUPLICATE DUPLICATE DUPLICATE DUPLICATE BigData
• See: <http://goo.gl/2iaHqD>
 • rsync for modified data
 • bbcp for new transfers of large single files, regardless of network
 • tar/netcat for deep/large dir structures over LANs
 • tar/gzip/bbcp to copy deep/large dir structures over WANs
Checksums

- They work. Choose one and use it.
- `md5sum / jacksum`
- Use MANIFEST files & copy them along with the data files.
- See Checksum example
- `http://goo.gl/uvB5Fy`
Processing BigData

- Files (HDF5, bam/sam) and specialized utilities (nco/ncview, [Py/Vi]tables, R, Matlab)
- Relational Dbs (SQLite, Postgres, MySQL)
- NoSQLs (MongoDB, CouchDB)
- Binary Dumps (Perl's Data::Dumper, Python's pickle)
- Non-Storage (pipes, named pipes/FIFOs, sockets)
- Keep it RAM-resident.
BigData, not foreverData

- HPC is not backed-up.
- Cannot tolerate old, unused BigData.
- Quotas on Size & # of files
- Please help us by doing your own data triage.
- Ask your PIs to bug our boss to provide more resources so we can provide more resources.
Follow Along

- Take a few moments to login to cluster and follow along if you want.

- After logging in, follow me on screen

- Ref: