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Good Judgement 
comes from Experience

Experience comes from
Bad Judgement



  

Good Judgement 
comes from Experience

Experience comes from
Bad Judgement



  

Or...

Some good comes 
from all catastrophes.

Learn & Move on.



  

Some comments

● I assume you're a novice at Linux.. 
● .. & Bioinformatics
● We want to address both
● Without making you a mess.
● I speak too fast; let me know when I do.
● The Unknown Unknowns problem.
● Questions, please, but I may not answer them 

immediately



  

Philosophy about computing

● Be lazy
● Copy others
● Don't invent anything you don't have to
●  Re-use, re-cycle, DON'T re-invent
● Resort to new code only when absolutely 

necessary.



  

For Biologists

● You're not CS, not programmers
● Don't try to be them
● But!  Try to think like them, at least a bit

● And some concepts and abilities are important



  

Useful Concepts

● LEARN HOW TO GOOGLE (see Fix IT 
Yourself with Google in the resources).

● Listservs, forums, IRCs are VERY useful for 
more involved questions

● BUT!!  Unless you ask questions intelligently, 
you will get nothing but grief.



  

How to Ask Questions

● Reverse the situation: if you were answering 
the question, what information would you 
need?

● Not Science, but it is Logic.
● Include enough info to recreate the problem.
● Exclude what's not helpful or ginormous (learn 

to use pastie.org) 
● Use text, not screenshots if possible.



  

This is a bad question:

Why doesn't 'X' work?



  

A good question
I tried running this new module this morning and it looks 
like I can't get it to launch on HPC and my output files 
aren't helping me figure out what is wrong.

I am working out of 
/bio/abriscoe/RNA_Seq_Data/M_sexta_RNAseq
And the qsub script is 'job12.sh'

When I submit the job, it appears to go thru the scheduler 
but then dies immediately.

I can't find any output to tell me what's wrong.



  

Linux Resources

● GOOGLE → Forums, Lists & List Archives, 
IRCs

● The HPC HOWTO <goo.gl/kzlqI>
● Software Carpentry
● Showmedo.com
● Us – Jenny & Harry
● Please ask questions that are answerable.



  

What is a cluster?

● bunch of big general purpose computers
● running Linux
● linked by some form of networking
● have access to networked storage 
● that can work in concert to address large 

problems
● by scheduling jobs very efficiently
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HPC Specifically

 ~ 2500 64bit compute cores 
  ~14TB aggregate RAM (fast silicon memory)
  1/2 PB of storage (1000x  slower than RAM)
   connected by 1Gb ethernet (100MB/s), DDR 

(400MB/s), QDR Infiniband (800MB/s) (per channel)
  uses the Grid Engine scheduler to handle Queueing
  >600 users, of whom 20-100 are online at any time



  

HPC is NOT

● Your personal machine.
● It's a shared resource
● Pretty well protected against mischief and 

disaster
● But don't take that as a challenge
● !! → Data is NOT backed up. ← !!



  

Data Sizes

● Especially with NGS techniques, you'll be 
crossing the line into BIG DATA.

● Big Data is somewhat dangerous due to its 
bigness.

● Think before you start.  You can't predict 
everything, but you can predict a lot of things.



  

NO BACKUPS

● Data on HPC is not backed up
● Most data is stored on RAID6 storage. 
● BUT!  Any of that data can disappear at any 

moment.
● So if it's valuable to you, back it up elsewhere.



  

Commandline Cons

● The tyranny of the blank page
● No visual clues
● Type vs  click
● Have to know what to type



  

Commandline Pros

● It doesn't get much worse than this.
● When you do learn it, you'll know it and it 

probably won't change for the rest of your life, 
unless they perfect mind control..

● It's an efficient way of interacting with the 
computer (which is why it's survived for 50yrs).

● You can use it to create simple, but very 
effective pipelines and workflows.



  

The Shell

● Program that intercepts and translates what 
you type, to tell the computer what to do.

● What you will be interacting with mostly.
● HPC shell is 'bash' (also dash, csh, tcsh zsh)
● A qsub script is just a series of bash 

commands that sets up your resource 
requirements 



  

Know the shell, Embrace the shell

● If you don't get along with the shell, life will be 
hard.

● Before you submit anything to the cluster via 
qsub, get it going in your login shell.

● You're welcome to start jobs in on the login 
shell, but don't let them run long.

● 'Ctrl+C ('^C') kills the job you just started. 



  

The scheduler (GE)

● Just another program that juggles requests for 
 resources

● Make sure a program is working on a small set 
of test data.

● Need a short bash script (aka qsub script) to 
tell the GE what your program needs to run.

● Can improve the performance of your program 
in a variety of ways (staging data, running in 
parallel, using array jobs, etc)



  

A simple qsub script
#!/bin/bash
# Usage: sleeper.sh [seconds]
#        default for time is 60 seconds
#$ -N Sleeper1
#$ -S /bin/bash
# Make sure that the .e and .o file arrive in the working directory
#$ -cwd
#Merge the standard out and standard error to one file
#$ -j y
/bin/echo Here I am: `hostname`. Sleeping now at: `date`
/bin/echo Running on host: `hostname`.
/bin/echo In directory: `pwd`
/bin/echo Starting on: `date`
#$ -m be
#$ -M hmangala@uci.edu
time=60
if [ $# -ge 1 ]; then
   time=$1
fi
sleep $time
echo Now it is: `date`



  

Solving Problems

● Reduce the scope of the problem
● What in particular is failing?
● Debug in the login shell rather in qsub shell as 

long as possible.
● Things will start faster and fail faster in the login 

shell.
● (almost) anything in a qsub script can be pasted 

into a bash shell and have the same effect.
● Think of your login shell as your home and the 

cluster as a slightly sketchy bar.



  

Foreground & background jobs

● Foreground (fg) jobs are connected to the 
terminal

● Background (bg) jobs have been disconnected 
from the terminal.

● Send a job to the bg by appending '&'
● Recall a job to the fg with 'fg'.
● Send a fg job to the bg with '^z', then 'bg'



  

Screen & Byobu

● If you need to maintain a live connection for 
some reason, use 'byobu'.

● It calls 'screen' and allows you to multiplex and 
maintain connections.

● Somewhat unintuitive interface but very 
powerful.



  

x2go

● Linux uses X11 for graphics
● X11 is very chatty, high bandwidth, sensitive to 

network hops/latency.
● If you need graphics programs on HPC, use 

x2go vs native X11.
● x2go is described in the Tutorial & HOWTO.



  



  

Commandline Editing

● Since you'll be spending a lot of time fighting 
with the cmdline, make it easy on yourself.

● Learn cmdline editing to edit previous cmds
● Up/Down arrow keys scroll thru cmd history
● L/R arrow keys scroll by 1 char
● ^ makes L/R arrow jump by a word
● Home, End, Insert, Delete keys work (except 

Macs lack 'Delete' keys
● ^u kills from cursor left; ^k kills from cursor to 

right



  

STDIN, STDOUT, STDERR

● STDIN is usually the keyboard, but...
● STDOUT is usually the screen, but...
● STDERR is also usually the screen, but...
● All can be redirected all over the place
● to files, to pipes, combined, split (by tee), etc
● More on this later.



  

Pipe = |

● Works with STDIN/OUT/ERR to create 
'pipelines'

● Very similar to plumbing; can add 'tee's to 
introduce splits

● STDOUT of one program goes to the STDIN 
of another command whose STDOUT goes to 
the STDIN of another program ad infinitum.

● Sooooo......



  

Pipe Example
$ w |cut -f1 -d ' ' | sort | egrep -v "(^$|USER)" | uniq -c | wc

w  spits out who is on the system right now
cut -f1 -d ' ' chops out the 1st field (the user), 
                    based on the space token
sort  sorts the usernames alphabetically
egrep -v "(^$|USER)" filters out both blank lines
                                    and lines with 'USER'
uniq -c  counts the unique lines
wc word-counts that output.



  

Here's another

$ qhost | scut -f=7 | tr -d /G/ | stats

qhost Grid Engine utility that shows host status
scut -f=7 extracts the 8th col*, separated by whitespace
tr -d /G/ deletes all instances of 'G'
stats calculates descriptive stats of all STDIN

* computers (often) annoyingly count from 0, so the 
8th column is #7



  

Files & Directories

● Files & folders much like on Mac & Win
● Except...
● Names are case-sensitive, 256 char long
● 'Folders' → 'Directories' , separated by '/'
● No spaces in names(*)
● . means 'in this dir'
● ~ means 'home dir'
● A leading '/' means 'from the root dir'



  

/
├── bin critical executables
├── boot kernel image and init files
├── dev device file
├── etc config files
├── home usually where your files live
├── lib critical library files
├── lib32 32bit libs
├── lib64 64bit libs
├── lost+found  what it sounds like
├── media where removable disks get mounted
├── mnt where temporary other devices devices  get mounted
├── opt optional package installs
├── proc process tracking dir, system config files
├── root home for the root user
├── run keeps track of running processes (locks, IDs)
├── sbin system binaries
├── selinux ugh. Secure linux config (usually empty on a usable system)
├── srv service-specific files (some distros)
├── sys system-specific files (some distros)
├── tmp where anyone can write temporay files
├── usr most of the system files live here
└── var 'varying' files for keeping track of various system processes.



  

How to use commands

● 'cmd -h'
● 'cmd --help'
● 'man cmd'
● 'info cmd' (but you hope not)
● And ….. Google...



  

Finally, commands
● ls [many options] = list fil<tab><tab>
● cd [up or down] = change directory
● find [from] -name [name] = find files
● locate [name] = where is this file?
● tree [options] = show the dir tree
● file [name(s)] = what is this?
● du = disk usage
● df = disk free
● less [names] = view files
● cols [file] = view file in columns



  

Creative/destructive commands

● mkdir [name] – make a dir
● rmdir [name] – remove a dir
● mv [from] [to] = move or rename
● cp [from] [to] = copy file(s)
● rm [file] = delete file(s) 
● wget [URL] = get a file from the Internet
● curl -O [URL]  = ditto, but on steroids



  

More informational cmds

● mc = Midnight Commander
● [ah]top = top CPU using processes
● time [command] = how long does it take?
● [aef]grep [regex] [files] = find regex in files
● cat [files] = print the files to STDOUT
● head/tail [files] = dump the top / bottom of files



  

Archiving/Compression

● tar = std archive format for Linux   
● zip = common archive format, from Windows
● gzip/unzip = common compressed format
● bzip2/bunzip2 = another compressed format
● pigz = parallel gzip (for large files)
● pbzip – parallel bzip2 (ditto)



  

Regular Expressions

● Among the most powerful concepts in pattern 
matching

● Simple in concept, NASTY in implementation
● Among the ugliest / most confusing things to 

learn well
● But pretty easy to learn the simple parts.
● But you NEED to learn it – it's central to 

computers and especially biology



  

Regexes

● Simplest form is called globbing (a*)
● Mix it up (a*.txt)
● A bit more (a*th.txt)
● Can be MUCH more complex:
● [aeiou] = any of 'aeiou'
● F{3,5} = 3-5 'F's
● H+ = 1 or more 'H's
● . = any character
● Also classes of characters (#s, alphabetic, words)



  

Editors: simple → complex

Text-based:
nano, joe, vi/vim, emacs

GUI-based:
gedit, nedit, kate, jedit, emacs

   (choose one and learn it)



  

Customize Your Environment

● Change your prompt to something useful to you 
(and to us): 

● PS1="\n\t \u@\h:\w\n\! \$ "
● Set aliases (alias nu=”ls -lt |head -22”)
● Set Environment Variables (export EDITOR=joe)



  

Disk Quotas

● Unlike BDUC, HPC enforces disk quotas
● You can only have so much space.
● 20GB for most users
● More for Condo owners or groups who have 

bought extra disk space.
● AGAIN: the fact that you are allowed 20 GB or 

200GB does not mean that it's SAFE.  It is not.



  

Moving Data to / from HPC

● Covered in detail in HPC USER HOWTO, 
which references: goo.gl/XKFEp

● scp, bbcp, netcat/tar  on Mac, Linux.
● WinSCP, Filezilla, CyberDuck,FDT on Win
● Everyone should know how to use rsync.  Not 

the easiest to learn, but very powerful.
● rsync GUIs for Linux, Windows, MacOSX



  

Programs, finally

● 3 main sets of programs
● Your personal set (later)
● The default system utilities
● The module system programs



  

How to find them

● locate <partial search term>
● apropos <search term>
● na<tab><tab> → name
● yum search <search term>   # CentOS
● module avail (will dump all modules)
● Google
● Ask us.



  

When (not if) it fails

● prog -h 
● prog --help
● prog -?
● man prog
● info prog
● Google



  

Resources

● Please see the Resource List at the end of the 
tutorial.
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