

BioLinux on HPC

Bio: Jenny Wu
<jiew5@uci.edu>

Linux: Harry Mangalam
<harry.mangalam@uci.edu>

mailto:jiew5@uci.edu

Good Judgement
comes from Experience

Experience comes from
Bad Judgement

Good Judgement
comes from Experience

Experience comes from
Bad Judgement

Or...

Some good comes
from all catastrophes.

Learn & Move on.

Some comments

● I assume you're a novice at Linux..
● .. & Bioinformatics
● We want to address both
● Without making you a mess.
● I speak too fast; let me know when I do.
● The Unknown Unknowns problem.
● Questions, please, but I may not answer them

immediately

Philosophy about computing

● Be lazy
● Copy others
● Don't invent anything you don't have to
● Re-use, re-cycle, DON'T re-invent
● Resort to new code only when absolutely

necessary.

For Biologists

● You're not CS, not programmers
● Don't try to be them
● But! Try to think like them, at least a bit

● And some concepts and abilities are important

Useful Concepts

● LEARN HOW TO GOOGLE (see Fix IT
Yourself with Google in the resources).

● Listservs, forums, IRCs are VERY useful for
more involved questions

● BUT!! Unless you ask questions intelligently,
you will get nothing but grief.

How to Ask Questions

● Reverse the situation: if you were answering
the question, what information would you
need?

● Not Science, but it is Logic.
● Include enough info to recreate the problem.
● Exclude what's not helpful or ginormous (learn

to use pastie.org)
● Use text, not screenshots if possible.

This is a bad question:

Why doesn't 'X' work?

A good question
I tried running this new module this morning and it looks
like I can't get it to launch on HPC and my output files
aren't helping me figure out what is wrong.

I am working out of
/bio/abriscoe/RNA_Seq_Data/M_sexta_RNAseq
And the qsub script is 'job12.sh'

When I submit the job, it appears to go thru the scheduler
but then dies immediately.

I can't find any output to tell me what's wrong.

Linux Resources

● GOOGLE → Forums, Lists & List Archives,
IRCs

● The HPC HOWTO <goo.gl/kzlqI>
● Software Carpentry
● Showmedo.com
● Us – Jenny & Harry
● Please ask questions that are answerable.

What is a cluster?

● bunch of big general purpose computers
● running Linux
● linked by some form of networking
● have access to networked storage
● that can work in concert to address large

problems
● by scheduling jobs very efficiently

/som

/w2

/bio

/data

/scratch /scratch /scratch

HPC Specifically

 ~ 2500 64bit compute cores
 ~14TB aggregate RAM (fast silicon memory)
 1/2 PB of storage (1000x slower than RAM)
 connected by 1Gb ethernet (100MB/s), DDR

(400MB/s), QDR Infiniband (800MB/s) (per channel)
 uses the Grid Engine scheduler to handle Queueing
 >600 users, of whom 20-100 are online at any time

HPC is NOT

● Your personal machine.
● It's a shared resource
● Pretty well protected against mischief and

disaster
● But don't take that as a challenge
● !! → Data is NOT backed up. ← !!

Data Sizes

● Especially with NGS techniques, you'll be
crossing the line into BIG DATA.

● Big Data is somewhat dangerous due to its
bigness.

● Think before you start. You can't predict
everything, but you can predict a lot of things.

NO BACKUPS

● Data on HPC is not backed up
● Most data is stored on RAID6 storage.
● BUT! Any of that data can disappear at any

moment.
● So if it's valuable to you, back it up elsewhere.

Commandline Cons

● The tyranny of the blank page
● No visual clues
● Type vs click
● Have to know what to type

Commandline Pros

● It doesn't get much worse than this.
● When you do learn it, you'll know it and it

probably won't change for the rest of your life,
unless they perfect mind control..

● It's an efficient way of interacting with the
computer (which is why it's survived for 50yrs).

● You can use it to create simple, but very
effective pipelines and workflows.

The Shell

● Program that intercepts and translates what
you type, to tell the computer what to do.

● What you will be interacting with mostly.
● HPC shell is 'bash' (also dash, csh, tcsh zsh)
● A qsub script is just a series of bash

commands that sets up your resource
requirements

Know the shell, Embrace the shell

● If you don't get along with the shell, life will be
hard.

● Before you submit anything to the cluster via
qsub, get it going in your login shell.

● You're welcome to start jobs in on the login
shell, but don't let them run long.

● 'Ctrl+C ('^C') kills the job you just started.

The scheduler (GE)

● Just another program that juggles requests for
 resources

● Make sure a program is working on a small set
of test data.

● Need a short bash script (aka qsub script) to
tell the GE what your program needs to run.

● Can improve the performance of your program
in a variety of ways (staging data, running in
parallel, using array jobs, etc)

A simple qsub script
#!/bin/bash
Usage: sleeper.sh [seconds]
default for time is 60 seconds
#$ -N Sleeper1
#$ -S /bin/bash
Make sure that the .e and .o file arrive in the working directory
#$ -cwd
#Merge the standard out and standard error to one file
#$ -j y
/bin/echo Here I am: `hostname`. Sleeping now at: `date`
/bin/echo Running on host: `hostname`.
/bin/echo In directory: `pwd`
/bin/echo Starting on: `date`
#$ -m be
#$ -M hmangala@uci.edu
time=60
if [$# -ge 1]; then
 time=$1
fi
sleep $time
echo Now it is: `date`

Solving Problems

● Reduce the scope of the problem
● What in particular is failing?
● Debug in the login shell rather in qsub shell as

long as possible.
● Things will start faster and fail faster in the login

shell.
● (almost) anything in a qsub script can be pasted

into a bash shell and have the same effect.
● Think of your login shell as your home and the

cluster as a slightly sketchy bar.

Foreground & background jobs

● Foreground (fg) jobs are connected to the
terminal

● Background (bg) jobs have been disconnected
from the terminal.

● Send a job to the bg by appending '&'
● Recall a job to the fg with 'fg'.
● Send a fg job to the bg with '^z', then 'bg'

Screen & Byobu

● If you need to maintain a live connection for
some reason, use 'byobu'.

● It calls 'screen' and allows you to multiplex and
maintain connections.

● Somewhat unintuitive interface but very
powerful.

x2go

● Linux uses X11 for graphics
● X11 is very chatty, high bandwidth, sensitive to

network hops/latency.
● If you need graphics programs on HPC, use

x2go vs native X11.
● x2go is described in the Tutorial & HOWTO.

Commandline Editing

● Since you'll be spending a lot of time fighting
with the cmdline, make it easy on yourself.

● Learn cmdline editing to edit previous cmds
● Up/Down arrow keys scroll thru cmd history
● L/R arrow keys scroll by 1 char
● ^ makes L/R arrow jump by a word
● Home, End, Insert, Delete keys work (except

Macs lack 'Delete' keys
● ^u kills from cursor left; ^k kills from cursor to

right

STDIN, STDOUT, STDERR

● STDIN is usually the keyboard, but...
● STDOUT is usually the screen, but...
● STDERR is also usually the screen, but...
● All can be redirected all over the place
● to files, to pipes, combined, split (by tee), etc
● More on this later.

Pipe = |

● Works with STDIN/OUT/ERR to create
'pipelines'

● Very similar to plumbing; can add 'tee's to
introduce splits

● STDOUT of one program goes to the STDIN
of another command whose STDOUT goes to
the STDIN of another program ad infinitum.

● Sooooo......

Pipe Example
$ w |cut -f1 -d ' ' | sort | egrep -v "(^$|USER)" | uniq -c | wc

w spits out who is on the system right now
cut -f1 -d ' ' chops out the 1st field (the user),
 based on the space token
sort sorts the usernames alphabetically
egrep -v "(^$|USER)" filters out both blank lines
 and lines with 'USER'
uniq -c counts the unique lines
wc word-counts that output.

Here's another

$ qhost | scut -f=7 | tr -d /G/ | stats

qhost Grid Engine utility that shows host status
scut -f=7 extracts the 8th col*, separated by whitespace
tr -d /G/ deletes all instances of 'G'
stats calculates descriptive stats of all STDIN

* computers (often) annoyingly count from 0, so the
8th column is #7

Files & Directories

● Files & folders much like on Mac & Win
● Except...
● Names are case-sensitive, 256 char long
● 'Folders' → 'Directories' , separated by '/'
● No spaces in names(*)
● . means 'in this dir'
● ~ means 'home dir'
● A leading '/' means 'from the root dir'

/
├── bin critical executables
├── boot kernel image and init files
├── dev device file
├── etc config files
├── home usually where your files live
├── lib critical library files
├── lib32 32bit libs
├── lib64 64bit libs
├── lost+found what it sounds like
├── media where removable disks get mounted
├── mnt where temporary other devices devices get mounted
├── opt optional package installs
├── proc process tracking dir, system config files
├── root home for the root user
├── run keeps track of running processes (locks, IDs)
├── sbin system binaries
├── selinux ugh. Secure linux config (usually empty on a usable system)
├── srv service-specific files (some distros)
├── sys system-specific files (some distros)
├── tmp where anyone can write temporay files
├── usr most of the system files live here
└── var 'varying' files for keeping track of various system processes.

How to use commands

● 'cmd -h'
● 'cmd --help'
● 'man cmd'
● 'info cmd' (but you hope not)
● And ….. Google...

Finally, commands
● ls [many options] = list fil<tab><tab>
● cd [up or down] = change directory
● find [from] -name [name] = find files
● locate [name] = where is this file?
● tree [options] = show the dir tree
● file [name(s)] = what is this?
● du = disk usage
● df = disk free
● less [names] = view files
● cols [file] = view file in columns

Creative/destructive commands

● mkdir [name] – make a dir
● rmdir [name] – remove a dir
● mv [from] [to] = move or rename
● cp [from] [to] = copy file(s)
● rm [file] = delete file(s)
● wget [URL] = get a file from the Internet
● curl -O [URL] = ditto, but on steroids

More informational cmds

● mc = Midnight Commander
● [ah]top = top CPU using processes
● time [command] = how long does it take?
● [aef]grep [regex] [files] = find regex in files
● cat [files] = print the files to STDOUT
● head/tail [files] = dump the top / bottom of files

Archiving/Compression

● tar = std archive format for Linux
● zip = common archive format, from Windows
● gzip/unzip = common compressed format
● bzip2/bunzip2 = another compressed format
● pigz = parallel gzip (for large files)
● pbzip – parallel bzip2 (ditto)

Regular Expressions

● Among the most powerful concepts in pattern
matching

● Simple in concept, NASTY in implementation
● Among the ugliest / most confusing things to

learn well
● But pretty easy to learn the simple parts.
● But you NEED to learn it – it's central to

computers and especially biology

Regexes

● Simplest form is called globbing (a*)
● Mix it up (a*.txt)
● A bit more (a*th.txt)
● Can be MUCH more complex:
● [aeiou] = any of 'aeiou'
● F{3,5} = 3-5 'F's
● H+ = 1 or more 'H's
● . = any character
● Also classes of characters (#s, alphabetic, words)

Editors: simple → complex

Text-based:
nano, joe, vi/vim, emacs

GUI-based:
gedit, nedit, kate, jedit, emacs

 (choose one and learn it)

Customize Your Environment

● Change your prompt to something useful to you
(and to us):

● PS1="\n\t \u@\h:\w\n\! \$ "
● Set aliases (alias nu=”ls -lt |head -22”)
● Set Environment Variables (export EDITOR=joe)

Disk Quotas

● Unlike BDUC, HPC enforces disk quotas
● You can only have so much space.
● 20GB for most users
● More for Condo owners or groups who have

bought extra disk space.
● AGAIN: the fact that you are allowed 20 GB or

200GB does not mean that it's SAFE. It is not.

Moving Data to / from HPC

● Covered in detail in HPC USER HOWTO,
which references: goo.gl/XKFEp

● scp, bbcp, netcat/tar on Mac, Linux.
● WinSCP, Filezilla, CyberDuck,FDT on Win
● Everyone should know how to use rsync. Not

the easiest to learn, but very powerful.
● rsync GUIs for Linux, Windows, MacOSX

Programs, finally

● 3 main sets of programs
● Your personal set (later)
● The default system utilities
● The module system programs

How to find them

● locate <partial search term>
● apropos <search term>
● na<tab><tab> → name
● yum search <search term> # CentOS
● module avail (will dump all modules)
● Google
● Ask us.

When (not if) it fails

● prog -h
● prog --help
● prog -?
● man prog
● info prog
● Google

Resources

● Please see the Resource List at the end of the
tutorial.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

