
Introducing Linux on HPC

Linux: Harry Mangalam
harry.mangalam@uci.edu

Thanks to: Adam Brenner
aebrenne@uci.edu

mailto:harry.mangalam@uci.edu
mailto:aebrenne@uci.edu

Useful Emails

• Always cc: <hpc-support@uci.edu>
• Joseph Farran <jfarran@uci.edu>
• Harry Mangalam <hmangala@uci.edu>
• Garr Updegraff <garru@uci.edu>
• Adam Brenner <aebrenne@uci.edu>
• Edward Xia <xias@uci.edu>

mailto:garru@uci.edu
mailto:aebrenne@uci.edu

Course Survey

http://goo.gl/yPS6WK

http://goo.gl/yPS6WK

A General Outline

• Some philosophy.
• Some advice.
• Intro to HPC.
• Intro to Linux
• Intro to the Shell (bash)
• SGE and submitting jobs
• Intro to Biggish Data

I assume...

• You know very little about Linux and even
less about cluster computing.

• You're bright: can Google, and read
further by yourself.

• If I speak too fast; let me know
• Questions, ASK THEM, but I may not

answer them immediately. – “You don’t
know what you don’t know”

Computing Philosophy

 Unlike your Science...
 Be lazy.
 Copy others.
 Don't invent anything you don't have to.
 Re-USE, re-CYCLE, DON'T re-invent.
 Don't be afraid to ask others.
 Resort to new code only when absolutely

necessary.
• If you code, comment it.

Philosophy – Take Away

 You're not CS, not programmers

 Don't try to be them.

 But! Try to think like them, at least a bit

Getting Help

• Fix IT Yourself with Google
<goo.gl/05MnTi>

 Listservs, forums, IRCs are VERY useful
for more involved questions

 The HPC HOWTO <goo.gl/kzlqI>
 Us – Adam, Harry, Garr, Joseph.
 BUT!! Please ask questions intelligently.

How to Ask Questions

 Reverse the situation: if you were
answering the question, what information
would you need?

 Not Science, but it is Logic.
 Include enough info to recreate the

problem.
 Exclude what's not helpful or ginormous

(use <pastie.org> or <tny.cz>)
 Use text, not screenshots if possible.

Bad Question

Why doesn’t “X” work?

Good Question

I tried running the new podunk/2.8.3 module this morning
and it looks like I can't get it to launch on the Free64 queue.
My output files aren't helping me figure out what is wrong.

I am working out of /bio/joeuser/RNA_Seq_Data/
and the qsub script is 'job12.sh'. The output should be in
 /bio/joeuser/RNA_Seq_Data/output

When I submit the job, it appears to go thru the scheduler
but then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the Error
messages suggest that there's a problem finding
libgorp.so.3

HELP US HELP YOU

We Need:

- the directory in which you’re working (pwd),
- the machine you’re working on (hostname)
- modules loaded (module list)
- computer / OS you’re connecting from
- the command you used and the error it

caused (in /text/, not screenshot)
- much of this info is shown by your prompt

see <http://goo.gl/6eZORd>

On to HPC

What is the High Performance Computing

Cluster?

and…

Why do I need HPC?

What is a Cluster?

 bunch of big general purpose computers
 running the Linux Operating System
 linked by some form of networking
 have access to networked storage
 that can work in concert to address large

problems
 by scheduling jobs very efficiently

Overview

Client

Metadata server

Storage Servers

??

A:7265
B:9286
C:0757
D:9822
E:9667

A B C D E

HPC @ UCI in Detail

 ~5500 64b Cores – Mostly AMD, few Intel
 4+ Nvidia Tesla GPUs (2880 cores each)
 ~14TB aggregate RAM
 ~1PB of storage (1000x slower then RAM)
 Control network = 1Gb ethernet (100MB/s)
 Data network = QDR IB (5GB/s)
 Grid Engine Scheduler to handle Queues
 > 650 users, 100+ are online at anytime

What HPC is NOT

 NOT your personal machine – shared
resource

 NOT BACKED UP – WHAT. SO. EVER.

 Well secured from mischief and disasters –
not an invitation

DATA IS NOT BACKED UP

 NO DATA IS BACKED UP – WHAT SO
EVER - Agitate to your PIs to get us
more $ if you want this.

 Most data is stored on RAID6
 BUT! Any of that can disappear at any

moment
 IF ITS VALUABLE, back it up

elsewhere --- or the code that
generated it.

HPC FileSystem Layout

Orange – Cluster Wide

Black – Node Specific

/

├── data/ NFS Mount

 |─apps All Programs are installed here

 |─users Users home directory – 50GB LIMIT PER USER

├── w1/ Public NFS Server → Going away – 14TB Space

├── w2/ Public NFS Server → Going away – 40TB Space

 |----- pub/ Replacement for /w1, /w2

├── bio/ Space for BIO group → /dfs1

├── som/ Space for SOM group → /dfs1

├── cbcl/ Space for CBCL group → /dfs1

├── dfs1/ Fraunhofer FileSystem – new, Distributed File System ~380TB Space

├── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB of Space

├── fast-scratch High Speed Fraunhofer FileSystem for temporary storage - 13TB

 |----- ssd-scratch Very High IOPS for DB, other jobs.

├── /tmp Same as scratch

Disk Space / Quotes / Policies

 You can only have so much space
 50GB for /data/ ($HOME directory)
 1yr or older without use – please

remove from cluster
 More for Condo owners or Groups

who have bought extra disk space.
 Regardless, NO DATA IS BACKED

UP

Data Sizes

 Your data will be BIG – “BigData”
 BigData is somewhat 'dangerous'

due to its bigness.
 Think before you start. You can't

predict everything, but you can
predict a lot of things – more on this
later

Example Data Sizes

 1,000 b (1KB) – an email
 1MB – Size of a 3 ½ ‘‘ floppy
 250MB – Human Chr 1
 1,000,000,000b (1GB) – 30X Story of Civilization
 4GB – Size of DVD
 1,000,000,000,000b (1TB) – 1/15th Lib of

Congress (256 DVDs)
 5 TB – primary data fr. Illumina HiSeq2K
 1,000,000,000,000,000b (1PB) – 100X Lib of

Congress (262,144 DVDs)

Login with ssh

 SSH is an encrypted protocol so that info over
the connection can't be deciphered by others.

 You MUST use SSH to connect to HPC – think
command line

 Underlies 'scp' (secure copy), sftp

 Also 'sshfs' which allows you to attach your
filesystem to HPC (or vice versa).

Keeping SSH Session Alive

 If you need to maintain a live connection for
some reason, use 'byobu or screen'.

 It allows you to multiplex and maintain
connections in a single terminal window.

 Somewhat unintuitive interface but very
powerful.

 You know about cheatsheets (Google!!)

Command Line Cons

 The 'tyranny of the blank page'

 No visual clues

 Type vs click

 Have to know what to type

 HOW DO YOU KNOW WHAT TO TYPE???

Command Line Pros

 It doesn't get much worse than this

 When you do learn it, you'll know it and it
probably won't change for the rest of your life

 It's a very efficient way of interacting with the
computer (which is why it's survived for 50+yrs).

 You can use it to create simple, but very
effective pipelines and workflows.

Graphics Apps on HPC

 Linux uses X11 for graphics

 X11 is very chatty, high bandwidth, sensitive to
network hops/latency.

 If you need graphics programs on HPC, use
x2go vs native X11.

 x2go is described in the Tutorial & HOWTO,
also GOOGLE

The bash shell

 Once logged in to HPC via SSH you are now
using the Shell, which is..

 A program that intercepts and translates
what you type, to tell the computer what to
do.

 What you will be interacting with mostly.
 HPC shell is 'bash', altho there are others (csh,

tcsh, zsh, perlsh, etc).

Know the shell, Embrace the
Shell

 If you don't get along with the shell, life will be
hard.

 Before you submit anything to the cluster via
qsub, get it going in your login shell.

 You're welcome to start jobs in on the IO node,
type: qrsh

 “DO NOT RUN JOBS ON THE LOGIN NODE”

Bash variables

 What's a variable?

 Bash variables are odd.
 Set as THISVAR:

 THISVAR=”jam”
 But read as $THISVAR:

 echo $THISVAR

 Bash is good for process control
but awful for almost everything
else

How to know if I am on Login
Node?

 Look at your shell prompt!


 [aebrenne@hpc ~]$  ‘HPC’ is the login node

 [aebrenne@compute-6-1 ~]$  On compute 6-1

 May also use the command hostname to test if
you're on a particular host

Mon Apr 28 07:08:59 hmangala@hpc-s:~
678 $

Command Line Editing

 Since you'll be spending a lot of time fighting with the
cmd line, make it easy on yourself.

 Learn cmd line editing to edit previous cmds
 Up/Down arrow keys scroll thru cmd history
 L/R arrow keys scroll by 1 char
 ^ means CONTROL Key
 ^ makes L/R arrow jump by a word (usually)

 Home, End, Insert, Delete keys work (except Macs
lack 'Delete' keys (because … Steve Jobs)

 ^u kills from cursor left; ^k kills from cursor to right
 Tab for auto complete

STDIN, STDOUT, STDERR

 STD = Standard
 STDIN is usually the keyboard, but...
 STDOUT is usually the screen, but...
 STDERR is also usually the screen, but...
 All can be redirected all over the place
 to files, to pipes, combined, split (by 'tee'), etc
 recombined to make simple workflows
 More on this later.

File & Directories

 Files & folders much like on Mac & Win
 Except...
 Names are case-sensitive, 256 char long
 'Folders' → 'Directories' , separated by '/'
 No spaces in names*
 . means 'in this dir’
 .. means parent dir
 ~ means 'home dir'
 A leading '/' means 'from the root dir'

Foreground & Background
Jobs

 Foreground (fg) jobs are connected to the
terminal. You kill a fg job with ^C.

 Background (bg) jobs have been disconnected
from the terminal.

 Send a job to the bg by appending &
 Recall a job to the fg with fg.
 Send a fg job to the bg with '^z' (suspend), then

'bg'.
 'jobs' - status of your jobs in the current shell

Pipe |

 Works with STDIN/OUT/ERR to create
'pipelines'

 Very similar to plumbing; can add 'tee's to
introduce splits

 STDOUT of one program goes to the STDIN of
another command whose STDOUT goes to the
STDIN of another program ad infinitum.

 Sooooo......

Pipe Example

w |cut -f1 -d ' ' | egrep -v "(^$|USER)" | sort | uniq -c | wc

w spits out who is on the system right now

cut -f1 -d ' ' chops out the 1st field (the user), based on the space
token

egrep -v "(^$|USER)" filters out both blank lines and lines with
'USER’

sort sorts the usernames alphabetically

uniq -c counts the unique lines

wc -l word-counts that output.

Example: Now on HPC!

Help on Commands

 cmd –h

 cmd –help

 man cmd

 [info cmd] (but you hope not)

 And ….. Google...

Cmds that Inform

 ls [many options] = list fil<tab><tab>
 cd [up or down] = change directory
 find [from] -name [name] = find files
 locate [name] = where is this file?
 tree [options] = show the dir tree
 file [name(s)] = what is this?
 du = disk usage
 df = disk free
 less [names] = view files
 cols [file] = view file in columns

Creative / Destructive Cmds

 mkdir [name] – make a dir
 rmdir [name] – remove a dir
 mv [from] [to] = move or rename
 cp [from] [to] = copy file(s)
 rm [file] = delete file(s)
 wget [URL] = get a file from the Internet
 curl -O [URL] = ditto, but on steroids

More Useful Cmds

 mc = Midnight Commander
 [ah]top = top CPU-using processes
 time [command] = how long does it take?
 [aef]grep [regex] [files] = find regex in files
 cat [files] = print the files to STDOUT
 head/tail [files] = dump the top / bottom of

files

Regular Expressions

 Among the most powerful concepts in pattern
matching

 Simple in concept, NASTY in implementation
 Among the ugliest / most confusing things to

learn well
 But pretty easy to learn the simple parts.
 You will NEED to learn it – it's central to

computers and especially biology

Simple Regex Examples

 Simplest form is called globbing: a*
 Barely more complicated : a*.txt
 A bit more: a*th.txt
 Can be MUCH more complex:
 [aeiou] = any of 'aeiou'
 F{3,5} = 3-5 'F's
 H+ = 1 or more 'H's
 . = any character
 Also classes of characters (#s, alphabetic,

words)

Archiving / Compression

 tar = std archive format for Linux

 zip = common archive format, from Windows

 gzip/unzip = common compressed format

 bzip2/bunzip2 = another compressed format

 pigz = parallel gzip (for large files)

 pbzip – parallel bzip2 (ditto)

Customize Your session

 Change your prompt to something useful to you
(and to us): PS1="\n\t \u@\h:\w\n\! \$ "

 Set aliases (alias nu=”ls -lt |head -22”)
 Set Environment Variables (export EDITOR=vim)
 Use DirB for bookmarks:
source /data/hpc/share/bashDirB

 Make these permanent via setting them in your
~/.bashrc file in your HOME directory

Editing Files: simple &
complex

•Text-based:
 nano, joe, vi/vim, emacs

•GUI-based:
 gedit, nedit, kate, jedit, emacs

 (choose one and learn it, well)

Move Data to / from HPC

 Covered in detail in HPC USER HOWTO, which
references: <goo.gl/XKFEp>

 scp, bbcp, netcat/tar on Mac, Linux.

 WinSCP, Filezilla, CyberDuck,FDT on Win

 Everyone should know how to use rsync. Not the
easiest to learn, but very powerful & scriptable.

 rsync GUIs for Linux, Windows, MacOSX

Using Software on HPC

 3 main sets of programs

•Your personal set (typically in ~/bin)

•The default system utilities
cut, grep, ls, mv, cp, rm, cd, etc…

•The module system programs

The Module System

 module avail shows all installed software

 module avail sam ditto but starting with 'sam'

 module load R/3.01 loads program R version 3.01
(but doesn't start it)

 module unload unloads the specified program

 module purge removes all loaded programs

 module list lists all the currently loaded ones

 module whatis lists what is known about it

The Scheduler (GE)

 Just another program that juggles requests for
resources

 Make sure a program is working on a small set
of test data on an interactive shell.

 Need a short bash script (aka qsub script) to
tell the GE what your program needs to run.

 Can improve the performance of your program
in a variety of ways (staging data, running in
parallel, using array jobs, etc)

The Scheduler: qsub vs qrsh

 qrsh will log you into an Interactive Node (IO Node)
where you can test out your scripts

 IO Nodes are useful for GUI programs (X11 & x2go
needed) or testing / running SMALL and FAST data
sets

 A qsub script is just a series of bash commands that
sets up your resource requirements, PATHs,
executes your jobs, and does the post-processing. –
NO USER INVOLVEMENTENT during the process

GE Useful Commands

 qstat - Queue Status
 queue / q – What queues you have access to
 qdel – Delete/Stop your job
 qhost – Show all nodes and their status

 Use man cmd to find out more information on above

 You MUST read this before starting to submit jobs:
 http://hpc.oit.uci.edu/running-jobs

http://hpc.oit.uci.edu/running-jobs
http://hpc.oit.uci.edu/running-jobs

QSUB Scripts

 Some useful SGE script parameters
<http://goo.gl/hrcXBg>

 Example qsub scripts:
<http://goo.gl/ENsBYt>

http://goo.gl/hrcXBg
http://goo.gl/ENsBYt

GE – Request Node Resources

 Use Case: You know your program requires at
least

•24GB Memory
•16 CPU Cores
 You need to tell the scheduler
 #$ -pe openmp 16
 #$ -l mem_free=24G
 This does not make your program run faster or

use all cores – you simply reserve this amount

GE – Queues

 As you noticed, the scheduler uses queues to
handle your job.

 Some queues have higher priority than others.

 Type 'queue' or 'q' to see what you have
access to.

 #$ -q som, free*

GE – Free and All Queue

 The free* queues allows anyone to use CPU
cycles when they are not in use on any
queue/node cluster wide

 When owners want to use their nodes, free*
 jobs are suspended

 Please see: <http://hpc.oit.uci.edu/queues>
 Similar to the free* queues, the 'all' queue is

group-specific: abio, asom, etc.

http://hpc.oit.uci.edu/queues

GE – Checkpointing

The Berkeley Checkpointing system allows jobs to:
 Be bounced to another node when it gets suspended
 Survive crashes since it checkpoints the job state every

6hrs, so it will never lose more than 6 hrs of runtime.
 Avoid the runtime limit by resubmitting the job back into the

job queue.
 BUT, your qsub script needs to request the setup

beforehand – only 2 directives required.

 See: <http://hpc.oit.uci.edu/checkpoint>.

http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://hpc.oit.uci.edu/checkpoint

GE – Job Arrays

Job Arrays allow a single job to act as if it is operating in a
loop.

 You can use the built-in counter $SGE_TASK_ID to control
the sequence of jobs

 You can control the job by referring to only 1 JobID.
 It is MUCH more efficient to do 1000 jobs via Job Array than

by individual qsub.
 An efficient alternative to script generators.
 So if you have zillions of almost identical jobs and can index

them via the $SGE_TASK_ID counter, then use Job Arrays

Big Data

 Volume
•Scary sizes, and getting bigger
 Velocity

•Special approaches to speed analysis
 Variety

•Domain-specific standards (HDF5/netCDF, bam/sam,
FITS), but often aggregations of unstructured data
 BigData Hints for Newbies
 <http://goo.gl/aPj4az>

http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html
http://moo.nac.uci.edu/~hjm/biolinux/BigData4Newbies.html

Big Data – How Big is Big?

Integer Byte Sizes

Inodes and ZOT Files

 Inodes contain the metadata for files and dirs
 Inodes are pointers to the data
 Regardless of size, a file needs at least one

inode to locate it.
 A file of 1 byte takes up the same minimum

inode count as a file of 1TB
 DO NOT USE ZOTFILES!! – Zillions of Tiny

Files

Streaming Reads & Writes

Let me demonstrate with a card trick.

Pointless Data Replication

 How informative is this?
 How informative is this?
 How informative is this?
 How informative is this?
 How informative is this?

 vs
 How informative is this? [5x]

Editing Big Data

 Don't

 Use format-specific utilities to view such files
and hash values to check if they’re identical to
what they should be.

 Try not to be the person who tries to open a
200GB compressed data file with
nano/vim/joe/emacs, etc.

[De]Compression

 If your applications can deal with compressed
data, KEEP IT COMPRESSED.

 If they can't, try to use pipes (|) to decompress
in memory and feed the decompressed stream
to the app. Many popular apps now allow this.

 Use native utilities to examine the compressed
data (zcat/unzip/gunzip, grep, archivemount,
Vitables, ncview, etc.

Moving BigData

 1st: Don't.
 Otherwise, plan where your data will live for the life of

the analysis, have it land there, and don't move it
across filesystems.

 Don't DUPLICATE DUPLICATE DUPLICATE BigData
 See: <http://goo.gl/2iaHqD>

•rsync for modified data
•bbcp for new transfers of large single files, regardless of
network
•tar/netcat for deep/large dir structures over LANs
•tar/gzip/bbcp to copy deep/large dir structures over
WANs

http://goo.gl/2iaHqD

Checksums

 They work. Choose one and use it.
 md5sum / jacksum
 Use MANIFEST files & copy them along with

the data files.
 See Checksum example

• http://goo.gl/uvB5Fy

http://goo.gl/uvB5Fy

Processing BigData

 Files (HDF5, bam/sam) and specialized utilities
(nco/ncview, [Py/Vi]tables, R, Matlab)

 Relational Dbs (SQLite, Postgres, MySQL)
 NoSQLs (MongoDB, CouchDB)
 Binary Dumps (Perl's Data::Dumper, Python's

pickle)
 Non-Storage (pipes, named pipes/FIFOs,

sockets)
 Keep it RAM-resident.

BigData, not ForeverData

 HPC is not backed-up.

 Cannot tolerate old, unused BigData.

 RobinHood is looking for your old BigData.

 Please help us by doing your own data triage.

 Ask your PIs to bug our boss to provide more
resources so we can provide more resources.

Follow Along

 Take a few moments to login to cluster and
follow along if you want.

 After logging in, follow me on screen

 Ref:
 http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html

	PowerPoint Presentation
	Slide 2
	Slide 3
	Before We Begin
	Slide 5
	Computing Philosophy
	Philosophy – Take Away
	Getting Help
	How to Ask Questions
	Bad Question
	Good Question
	On to HPC
	Slide 13
	What is a Cluster?
	Overview
	Slide 16
	HPC @ UCI in Detail
	What HPC is NOT
	DATA IS NOT BACKED UP
	HPC FileSystem Layout
	Disk Space / Quotes / Policies
	Data Sizes
	Example Data Sizes
	How to: Login with SSH
	Keeping SSH Session Alive
	Command Line Cons
	Command Line Pros
	GUI with SSH and HPC
	How to: SSH & The Shell
	Know the shell, Embrace the Shell
	Slide 31
	How to know if I am on Login Node?
	Command Line Editing
	STDIN, STDOUT, STDERR
	File & Directories
	Foreground & Background Jobs
	Pipe |
	Pipe Example
	General Commands
	Some Useful Commands
	Creative / Destructive Commands
	More Useful Commands
	Regular Expressions
	Regexes
	Archiving / Compression
	Customize Your Environment
	Editing Files: simple & complex
	Move Data to / from HPC
	Using Software on HPC
	The Module System
	The Scheduler (GE)
	The Scheduler: QSUB vs QRSH
	GE Useful Commands
	Sample QSUB Script
	GE – Request Node Resources
	GE – Queues
	GE – Free and All Queue
	Slide 58
	Slide 59
	Big Data
	Big Data – How Big is Big?
	Integer Byte Sizes
	Inodes and ZOT Files
	Streaming Reads & Writes
	Pointless Data Replication
	Editing Big Data
	[De]Compression
	Move BigData
	Checksums
	Processing BigData
	Big, but not forever
	Follow Along

