
Intro to Linux on
the HPC cluster

Harry Mangalam
harry.mangalam@uci.edu

mailto:harry.mangalam@uci.edu

Some remarks..

• You've heard of Linux...? (~ Darwin/BSD,
very unlike Windows, but .. Cygwin!)

• You're interested in it, because …?
• Google, and read further by yourself.
• Questions, ASK THEM, but I may defer

answering them immediately.
• “You don’t know what you don’t know”

Computing Philosophy

 Unlike your Science...
 Be lazy.
 Copy others.
 Don't invent anything you don't have to.
 Re-USE, re-CYCLE, DON'T re-invent.
 Don't be afraid to ask others.
 Resort to new code only when absolutely

necessary.

Philosophy

 You're not CS, not programmers

 Don't try to be them

 But! Try to think like them, at least a bit

 Google is your friend

Getting Help

• Fix IT Yourself with Google
http://goo.gl/05MnTi

 Listservs, forums, IRCs are VERY useful
for more involved questions.

 The HPC Web page http://hpc.oit.uci.edu/
and HOWTOs there.

 Us – Harry, Joulien, Joseph, Francisco
 BUT!! Unless you ask questions

intelligently, you will get nothing but grief.

http://goo.gl/05MnTi
http://hpc.oit.uci.edu/

How to Ask Questions

 Reverse the situation: if you were
answering the question, what information
would you need?

 Not Science, but it is Logic.
 Include enough info to recreate the

problem.
 Exclude what's not helpful or ginormous

(use http://pastie.org or http://tny.cz)
 Use text, not screenshots if possible.

http://pastie.org/
http://tny.cz/

Bad Question

Why doesn’t “X” work?

or

“X” doesn't work anymore.

Good Question

I tried running the new podunk/2.8.3 module this morning and it
looks like I can't get it to launch on the Free64 queue. My output files
aren't helping me figure out what is wrong.

I am working out of the /bio/joeuser/RNA_Seq_Data/ directory
and the qsub script is 'job12.sh'. The output should be in
 /bio/joeuser/RNA_Seq_Data/output.

I tested it in my login shell with a small data set and it worked OK,
but when I submit the job, it appears to go thru the scheduler but
then dies immediately when it hits the execution node.

I can't find any output to tell me what's wrong, but the error
messages suggest that there's a problem finding libgorp.so.3

HELP US HELP YOU

We Need:

- the directory in which you’re
working (pwd),
- the machine you’re working
on (hostname)
- modules loaded (module list)
- computer / OS you’re
connecting from
- the command you used and
the error it

caused (in /text/, not
screenshot)
- much of this info is shown by
your prompt
- try the mayday script from
anywhere on HPC

see http://goo.gl/6eZORd

http://moo.nac.uci.edu/~hjm/hpc/HPC-Mayday.html
http://goo.gl/6eZORd

On to HPC

What is the High Performance Computing

Cluster?

and…

Why do I need HPC?

On to HPC

 Pod of large (multicore) general purpose
computers that..

 run the Linux Operating System
 are linked by some form of networking
 have access to networked storage
 can work in concert to address large

problems (altho each core is pretty slow) ..

 ..by scheduling jobs very efficiently

HPC in more detail

 ~10K 64b Cores – Mostly AMD, few Intel
 ~55TB aggregate RAM
 ~2PB of storage
 Connected by 1Gb ethernet (100MB/s)
 and by QDR IB (4000MB/s)
 Grid Engine scheduler to handle Queues
 > 1600 active users, 100+ are online at anytime
 ~2K-20K job in the Qs

What HPC is NOT

 NOT: your personal machine
 It is a shared resource.
 What you do affects all the other users, so

think before you hit that 'Enter' key.
 Well secured from mischief and disasters –

not an invitation

ONLY SOME DATA IS
BACKED UP

 Selective Backup only.
 You have to choose which data to

back up or not.
 Most data is stored on RAID6
 BUT! Any of that can disappear at any

moment
 IF ITS VALUABLE, back it up

elsewhere --- or the code that
generated it.

HPC FileSystem Layout

Orange – Cluster Wide

Black – Node Specific

/

├── data/ NFS Mount

 |─apps All Programs are installed here

 +─users Users home directory – 50GB LIMIT PER USER

 |----- pub/ Public scratch space, overflow - 2 TB limit (but only active data)

├── bio/ Space for BIO group → /dfs1

├── som/ Space for SOM group → /dfs1

├── cbcl/ Space for CBCL group → /dfs1

├── dfs1/ BeeGFS Distributed File System ~620TB

 |----- dfs2/ BeeGFS Distributed File System ~403TB

 |----- dfs3/ BeeGFS Distributed File System ~500TB

├── scratch Node-specific temporary storage per job (faster than all above) ~1TB – 14TB

├── fast-scratch High Speed FileSystem for temporary storage - 13TB

 |----- ssd-scratch Very High IOPS for DB, other jobs. ~2TB

├── /tmp Same as scratch

 You can only have so much space
 50GB for /data/ (home directory)
 if 6months or older without use – please

remove from cluster or tarchive it.
 More for Condo owners or Groups who have

bought extra disk space.
 We now have a Selective Backup system,

but it's no replacement for your own
backups.

Backup Possibilities
● Your UCI 'Google Drive' can be connected

to HPC to back up small files

● You can buy a USB drive
to use as a backup →

● Use 'rsync' to do incremental
backups to it:
 rsync -av this_dir MyMac:/this_dir

● Your lab can buy a NAS device and mount
it on HPC as an NFS mount

● Your lab can rent space on an HPC
filesystem.

 SSH is an encrypted protocol so that info over
the connection can't be deciphered by others.

 You MUST use SSH to connect to
HPC, using the command line....

 ssh underlies 'scp' (secure copy), sftp

 Also 'sshfs' which allows you to attach your
filesystem to HPC (or vice versa).

Here vs Therere vs There

 Your laptop is HERE (and HERE is often dynamic)

 (How do you find out your IP #?)
 HPC is THERE (and THERE is always static)

 Files have to get from HERE to THERE (so it's always
easier to push data from HERE to THERE, but …..)

 Displays are generated THERE but are seen
HERE. (both Text and Graphics).

 The point above can be exploited to make life
easier. [byobu and x2go]

 Make sure of where you are (what machine you're
logged into) and in which direction the bytes are
going.

 Especially when you issue commands like 'rm'.

Commandline Hell

Command Line Cons

 The tyranny of the blank page

 No visual clues

 Type vs click

 Have to know what to type
 HOW DO YOU KNOW WHAT TO TYPE???

Command Line Pros

 It doesn't get much worse than this

 When you do learn it, you'll know it and it
probably won't change for the rest of your life

 It's a very efficient way of interacting with the
computer (which is why it's survived for 50+yrs).

 You can use it to create simple, but very
effective pipelines and workflows.

Keeping SSH Session Alive

 If you need to maintain a live connection for
some reason, use byobu or screen.

 It allows you to multiplex and maintain
connections in a single terminal window.

 Somewhat unintuitive interface but very
powerful.

 Find out how to use them via cheatsheets
(Google!!)

Byobu / Screen

Graphics Apps on HPC

 Linux uses X11 for graphics

 X11 is very chatty, high bandwidth, sensitive to
network hops/latency.

 If you need graphics programs on HPC, use
x2go vs native X11, which does for graphics
what byobu does for terminal screens.

 x2go is described in the Tutorial & HOWTO,
also … GOOGLE

Network Considerations

$ traceroute hpc.oit.uci.edu
traceroute to hpc.oit.uci.edu (128.200.84.34), 30 hops max, 60 byte packets
 1 415-vl110.ucinet.uci.edu (128.200.34.1) 0.434 ms 0.524 ms 0.586 ms
 2 cs1-core--415.ucinet.uci.edu (128.195.249.233) 0.376 ms 0.380 ms 0.416 ms
 3 dca--cs1-core.ucinet.uci.edu (128.195.239.182) 0.488 ms 0.594 ms 0.736 ms
 4 hpc-login-4.oit.uci.edu (128.200.84.34) 0.313 ms 0.300 ms 0.283 ms

Inside UCI (moo ↔ HPC)

Network Considerations

$ traceroute moo.nac.uci.edu
traceroute to moo.nac.uci.edu (128.200.34.95), 30 hops max, 60 byte packets
 1 haggis.net (192.168.1.1) 0.694 ms 0.940 ms 1.134 ms
 2 172.27.35.1 (172.27.35.1) 2.232 ms 2.301 ms 2.394 ms
 3 10.75.151.1 (10.75.151.1) 11.647 ms 11.766 ms 11.855 ms
 4 ip68-4-13-176.oc.oc.cox.net (68.4.13.176) 12.249 ms 16.099 ms 16.845 ms
 5 ip68-4-11-12.oc.oc.cox.net (68.4.11.12) 17.661 ms 18.192 ms 18.181 ms
 6 68.1.1.171 (68.1.1.171) 18.989 ms 23.355 ms 13.053 ms
 7 xe-5-1-1.edge2.LosAngeles9.Level3.net (4.53.230.93) 16.391 ms xe-5-0-
1.edge2.LosAngeles9.Level3.net (4.53.230.85) 16.392 ms xe-9-0-
1.edge2.LosAngeles9.Level3.net (4.53.230.229) 17.202 ms
 8 * * *
 9 CENIC.ear1.LosAngeles1.Level3.net (4.35.156.66) 20.376 ms 20.806 ms 20.817 ms
10 dc-uci-uci1--dc-lax-agg6-egm.cenic.net (137.164.24.42) 23.856 ms 24.259 ms 24.261 ms
11 cpl-core--cs1-core-kazad-dum-hsrp.ucinet.uci.edu (128.200.2.194) 20.705 ms 20.684 ms
20.660 ms
12 msd-core--cpl-core.ucinet.uci.edu (128.195.248.250) 18.776 ms 18.656 ms 18.152 ms
13 415--msd-core.ucinet.uci.edu (128.195.250.162) 19.409 ms 19.281 ms 19.523 ms
14 moo.nac.uci.edu (128.200.34.95) 19.151 ms 19.084 ms *

From Cox.net ↔ UCI

SSH & The Shell

 Once logged in to HPC via SSH you are now
using the Shell, which is..

 A program that intercepts and translates
what you type, to tell the computer what to
do.

 It is what you will be interacting with mostly.
 HPC shell is 'bash', altho there are others.
 bash is a full programming language, but a very

poor one. You'll need to learn Perl or Python.

Learn the bash shell.

 If you don't learn bash, life will be difficult on
Linux. Google is your friend, even if bash is not.
Before you submit anything to the cluster via
qsub, get it going in your login bash shell with a
small amount of data..

 You're welcome to start big jobs in on the IO
node, type: qrsh. But:

DO NOT RUN JOBS ON THE LOGIN NODES!!

How to know if I am on Login
Node?

Look at your shell prompt!
 Mon Mar 28 21:05:29 [0.02 0.18 0.23] user@hpc-login-1-2:~

1 $

 Can also use the command hostname
Mon Mar 28 21:05:29 [0.02 0.18 0.23] user@hpc-login-1-2:~

1 $ hostname

hpc-login-1-2.local

Now the Practical Stuff.

 From here on, we'll be covering actual, useful
commands and approaches.

 These will be demonstrated by me..
 The tutorial will repeat these with examples, so don't

get upset if you don't understand them the first time.
I didn't.

 Ask me to clarify if you don't understand a concept.
The concepts are important at this time, not the
commands.

Command Line Editing

 Since you'll be spending a lot of time fighting with the
cmd line, make it easy on yourself.

 Use cmdline editing to edit previous cmds.
 Up/Down arrow keys scroll thru cmd history.
 L/R arrow keys scroll by 1 char
 ^ means [hold down the CONTROL Key]
 ^→ & ^← makes the cursor jump by word (usually)

 Home, End, Insert, Delete keys work (except Macs
lack Delete keys (because … Steve Jobs)

 ^u kills from cursor left; ^k kills from cursor to right
 Use Tab for auto complete.

STDIN, STDOUT, STDERR

 T H I S I S I M P O R T A N T
 STDIN is usually the keyboard, but...
 STDOUT is usually the screen, but...
 STDERR is also usually the screen, but...
 All can be redirected all over the place
 to files, to pipes, to FIFOs to network sockets
 can be combined, split (by 'tee'), spawned into

subshells to make simple workflows
 More on this later.

File & Directories

 Files & Directories much like on Mac & Win
 Except...
 Names are case-sensitive, 256 char long
 'Folders' → 'Directories' , separated by '/'
 No spaces in names*
 [.] means 'in this dir’
 [..] means parent dir
 [~] means 'home dir'
 A leading '/' means 'from the root dir'

Foreground & Background
Jobs

 Foreground (fg) jobs are connected to the
terminal. You kill a fg job with ^C.

 Background (bg) jobs have been disconnected
from the terminal and are running in the bg.

 Send a job to the bg immed. by appending &
 Recall a job to the fg with fg.
 Send a fg job to the bg with ^z (suspend), then

'bg'.
 All jobs started in the terminal are killed when

you log out. (usually)

Pipe |

 Works with STDIN/OUT/ERR to create
'pipelines'

 Very similar to plumbing; can add 'tee's to
introduce splits.
$ ls | tee 1file 2file 3file | wc

 STDOUT of one program goes to the STDIN of
another command whose STDOUT goes to the
STDIN of another program ad infinitum.

 Sooooo......

Pipe Example

w|cut -f1 -d' '|egrep -v "(^$|USER)"|sort|uniq -c|wc

w spits out who is on the system right now

cut -f1 -d ' ' chops out the 1st field (the user), based on the space
token

egrep -v "(^$|USER)" filters out both blank lines and lines with
'USER’

sort sorts the usernames alphabetically

uniq -c counts the unique lines

wc -l word-counts that output.

Example: Now on HPC!

Help on Commands

 cmd –h

 cmd –help or cmd --help

 man cmd

 And ….. Google...

Google Terms

 Use specific terms to narrow
search

 ‘Linux’ ‘bash’ ‘nano’ ‘Perl’
 include ‘examples’ (!)
 StackOverflow, ServerFault
 BioStars, SeqAnswers

Some Useful Commands

 ls [many options] = list fil<tab><tab>
 cd [up or down] = change directory
 find [from] -name [name] = find files
 locate [name] = where is this file?*
 tree [options] = show the dir tree
 file [name(s)] = what is this?
 du -h = disk usage
 df -h= disk free
 less [names] = view files read-only
 cols [file] = view file in columns

Creative / Destructive
Commands

 mkdir [name] – make a dir
 rmdir [name] – remove a dir
 mv [from] [to] = move or rename
 cp [from] [to] = copy file(s)
 rm [file] = delete file(s)
 wget [URL] = get a file from the Internet
 curl -O [URL] = ditto, but on steroids

More Useful Commands

 mc = Midnight Commander
 [ah]top = top CPU-using processes
 time [command] = how long does it take?
 [aef]grep [regex] [files] = find regex* in files
 cat [files] = print the files to STDOUT
 head/tail [files] = dump the top / bottom of

files

Regular Expressions

 Among the most powerful concepts in pattern
matching

 Simple in concept, NASTY in implementation
 Among the ugliest / most confusing things to

learn well
 But pretty easy to learn the simple parts.
 You will NEED to learn it – it's central to

computers and especially biology

Regexes (in the shell)

 Simplest form is called globbing: a*
 Barely more complicated : a*.txt
 A bit more: a*th.txt
 Can be MUCH more complex:
 [aeiou] = any of 'aeiou'
 F{3,5} = 3-5 'F's
 H+ = 1 or more 'H's
 . = any character
 Also classes of characters (#s, alphabetic,

words)

Archiving / Compression

 tar = std archive format for Linux [example]

 zip = common archive format, from Windows

 gzip/ungzip = common compressed format

 bzip2/bunzip2 = another compressed format

 pigz = parallel gzip (for large files)

 pbzip – parallel bzip2 (ditto)

Customize Your Environment

 (or don't.. your choice)
 Set aliases (alias nu=”ls -lt |head -22”)
 Set Environment Variables (export EDITOR=vim)
 Change your bash behavior via shopt

(Google for how)
 Make these permanent via .bash_profile &
.bashrc files in your home directory (~)

Editing Files: simple &
complex

• Text-based:
•nano, joe, vi/vim, emacs

• GUI-based:
•gedit, nedit, kate, jedit, emacs

 (choose one and learn it, well)

Move Data to / from HPC

 Covered in detail in HPC USER HOWTO, which
references: <http://goo.gl/XKFEp>

 scp on Mac, Linux

 WinSCP, Filezilla, CyberDuck, FDT on Win

 Everyone should know how to use rsync. Not the
easiest to learn, but very powerful & scriptable.

 rsync GUIs for Linux, Windows, MacOSX

Checksums

 They work. Choose one and use it.
 md5sum / hashdeep / shasum
 Use MANIFEST files & copy them along with

the data files.
 See Checksum example

• http://goo.gl/uvB5Fy

Using Software on HPC

•Your personal set (typically in ~/bin)

•The default system utilities
cut, grep, ls, mv, cp, rm, cd, etc…

•The module system programs

3 main sets of programs

The Module System

 [module avail] shows all installed software
 [module load R/3.01] loads program R

version 3.01 (but doesn't start it)

 [module unload] unloads the specified
program

 [module purge] removes all loaded
modules

 [module list] lists all the currently loaded
modules

How to Find Software

 na<tab><tab> → name
 yum search <search term> # CentOS
 module avail (will dump all modules)
 searchmodules (modules & Perl, Python, R)
 Google
 Ask us.

The Grid Engine Scheduler

 Just another program that juggles requests for
resources

 Make sure the submitted program is working on
a small set of test data on an interactive shell.

 Need a short bash script (aka qsub script) to
tell the GE what your program needs to run.

 Can improve the performance of your program
in a variety of ways (staging data, running in
parallel, using array jobs, etc)

The Scheduler: qsub vs qrsh

 qrsh will log you into an Interactive Node (IO Node)
where you can test out your scripts

 IO Nodes are useful for GUI programs (X11 & x2go
needed) or testing / running SMALL and FAST data
sets

 A qsub script is just a series of bash commands that
sets up your resource requirements, PATHs,
executes your jobs, and does the post-processing.

 NO USER INVOLVEMENT during the process

GE Useful Commands

 qstat - Queue Status
 queue / q – What queues you have access to
 qdel – Delete/Stop your job
 qhost – Show all nodes and their status

 Use man cmd to find out more information on above

Ref:
 http://hpc.oit.uci.edu/running-jobs

Controlling SGE

 Visit:
 <http://hpc.oit.uci.edu/guides/qsub-biolinux.html>

 Ref:
 Some useful SGE Parameters:

http://goo.gl/hrcXBg

http://goo.gl/XKFEp

SGE: Request Node Resources

 Use Case: You know your program requires at
least

 24GB Memory
 16 CPU Cores

You need to tell the scheduler
#$ -l mem_free=24G
#$ -pe openmp 16
This does not make your program run faster or
use all cores – you simply reserve this amount

http://goo.gl/uvB5Fy

SGE: Queues

 As you noticed, the scheduler uses queues to
slot your job into available queues.

 Some queues have higher priority than others.
 Type queue or q to see what you have

access to.
 You specify these Qs in your qsub script with:
#$ -q som,asom,free*
(note that you can use globs (free*) to specify Qs)

SGE: ‘free’ and ‘all’ Q’s

• The free* queue allows anyone to use CPU
cycles when they are not in use on any
queue/node cluster wide

• When owners want to use their nodes, free*
jobs are suspended

 Similar to the free* queue, the 'all' queue is
group-specific: abio, asom, etc.

Follow Along

 Take a few moments to login to cluster and
follow along if you want.

 After logging in, follow me on screen

 Ref:
 http://moo.nac.uci.edu/~hjm/biolinux/Linux_Tutorial_12.html

	PowerPoint Presentation
	Before We Begin
	Computing Philosophy
	Philosophy – Take Away
	Getting Help
	How to Ask Questions
	Bad Question
	Good Question
	On to HPC
	Slide 10
	Slide 11
	Slide 13
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Disk Space / Quotes / Policies
	Slide 25
	How to: Login with SSH
	Slide 28
	Slide 29
	Command Line Cons
	Command Line Pros
	Keeping SSH Session Alive
	Slide 33
	GUI with SSH and HPC
	Slide 35
	Example Data Sizes
	How to: SSH & The Shell
	Know the shell, Embrace the Shell
	How to know if I am on Login Node?
	Slide 40
	Command Line Editing
	STDIN, STDOUT, STDERR
	File & Directories
	Foreground & Background Jobs
	Pipe |
	Pipe Example
	General Commands
	Slide 48
	Some Useful Commands
	Creative / Destructive Commands
	More Useful Commands
	Regular Expressions
	Regexes
	Archiving / Compression
	Customize Your Environment
	Editing Files: simple & complex
	Move Data to / from HPC
	Slide 58
	Using Software on HPC
	The Module System
	How to Find Software
	The Scheduler (GE)
	The Scheduler: QSUB vs QRSH
	GE Useful Commands
	Sample QSUB Script
	GE – Request Node Resources
	GE – Queues
	GE – Free and All Queue
	Follow Along
	Slide 70

